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1 Chapter 2: Basics, Vector fields

1.1 Chapter 2.1: Calculus of Motion

Consider vectors of motion against t of the form ~x(t) = 〈x(t), y(t), . . .〉.

• A line through p = (a, b, c) parallel to ~v = 〈vx, vy, vz〉 is ~x(t) = ~p+ t~v

• velocity is characterized completely by ~v(t) = ~x′(t) = 〈x′(t), y′(t), z′(t)〉.

• The speed of an object along that line versus t is the length of v (‖v‖)

• Therefore, the speed of an object along line

〈x(t), y(t), z(t)〉 = 〈0, 2,−3〉+ t〈1,−2, 2〉

is √
12 + (−2)2 + 22 = 3

• Note that ~v need not be constant. The speed of

~x(t) = ~p+ 3 sin(2πt)û, ‖û‖ = 1

would then be
‖6π cos(2πt)û‖ = |6π cos(2πt)|

• Acceleration a(t) = v′(t) = x′′(t) is straightforward. Acceleration of

x(t) = 〈−1 + cos(t), 1, cos(t)〉 = 〈− cos(t), 0,− cos(t)〉
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• An example position vector for a planet of distance r from the sun could be 〈r cos(t), r sin(t)〉.
The acceleration vector points in the opposite direction: 〈−r cos(t),−r sin(t)〉. In ad-
dition to being the analytical second derivative, consider that the force of gravity,
(which, by F = ma is proportional to acceleration) points towards the sun, with
acceleration perpendicular to velocity.

• A helix could be a 3D extension like 〈r cos(t), r sin(t), b · t〉.

2 Chapter 2.2: Space Curves

• Note that while ~x(t) = 〈cos(t), sin(t), 5〉 and ~x(t) = 〈cos(2t), sin(2t), 5〉 describe the
same curve, the space curve also records motion in time, so the velocity may be
different.

• If ~x(t) = t~v, then speed is ‖~x(t+∆t)−~t‖
∆t = ‖~v‖, direction is ~v

‖~v‖ , and velocity ~v is the
product of speed and direction.

• So ~v(t) = lim∆t→0
~x(t+∆t)−~x(t)

∆t = ~x′(t) = d~x
dt = 〈x′(t), y′(t), z′(t)〉

• Neat conceptual result: any y = f(x) can be made into x(t) = 〈t, f(t)〉, and then
v(t) = 〈1, f ′(t)〉, which points along the tangent line at 〈t, f(t)〉.

• Note that dot product derivatives work like regular product: [~a(t)·~b(t)]′ = ~a′(t)·~b(t)+
~a(t)·~b′(t), but the cross product does not work the same since d

dt [a×b] = a′×b+a×b′,
but since a× b′ = −b′ × a, can’t switch the order to a′ × b+ b′ × a due to this non-
commutativity.

• If
~x(t) = ~p+ t~v,

calculating velocity with respect to origin becomes

d

dt
‖~x(t)‖ =

~x(t) · ~x′(t)
‖~x(t)‖

=
~x

‖~x‖
· ~v,

after rewriting the distance formula and chugging through the chain rule.

• However, it becomes more clear when considering that (~v · x̂)x̂ is the projection of the
velocity vector onto the position vector. So, the length of this is the rate of change
of distance from origin!

3 Chapter 2.3: Integrals and Arc Length

• Integral of a vector function can be defined componentwise in a straightforward way:∫ b
a ~x(t) = 〈

∫ b
a x(t),

∫ b
a y(t),

∫ b
a z(t)〉
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• Example: if ball launched from origin with velocity 〈1, 2, 3〉 and acceleration 〈0, 0,−1〉,
it lands at

dv

dt
dt = 〈0, 0,−1〉 (1)∫

dv

dt
dt = v = 〈C,D,−t+ F 〉 = 〈1, 2, 3〉 = 〈1, 2,−t+ 3〉, t = 0 (2)

x =

∫
v = 〈t+K, 2t+M,−1

2
t2 + 3t+N〉, x(~0) = 〈0, 0, 0〉 (3)

~x(t) = 〈t, 2t, 3t− 1

2
t2〉 (4)

z(t) = 0→ t = 6→ ~x(6) = 〈6, 12, 0〉 (5)

(6)

• Also, generalizing ds =
√

(dx)2 + (dy)2, the length of an arc from point a to b

approaches
∫ b
a ds =

∫ tb
ta
‖x′(t)‖dt

• Example: a helix 〈a cos(ωt), a sin(ωt), bωt〉, parametrized by time t can be rewritten
in terms of s, the arc length:

s =

∫
‖x′(t)‖dt (7)

s =

∫ √
(−ωa sin(ωt))2 + (ωa cos(ωt))2 + (bω)2dt (8)

s = |ω|
∫ √

(a2 + b2)dt (9)

s = |ω|t
√
a2 + b2 (10)

• Note: It’s weird to think of time in terms of length. Could be analytically useful?

4 Chapter 2.4: Frenet Formulae

Main idea: Establish three new vectors T̂ (s), N̂(s), B̂(s) that change as we move along a
space curve, instead of ~x(t) that changes over an external “time” idea.

Remember that s =
∫ t

0 ‖~x
′(t̃)‖dt̃, so ds

dt = ‖~x′(t)‖ .

4.1 T̂ : Vector tangent to space curve

• Remember arc length is s =
∫ t

0 ‖~x
′(t̃)dt̃‖
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• T̂ is just normalized grad: ~x′(t)
‖~x′(t)‖

• This implies d~x
ds = T̂ since

s =

∫ t

0
‖~x′(t̃)dt̃‖ (11)

ds

dt
= ‖~x(t)‖ (12)

T̂ =
~x′(t)

‖~x′(t)‖
=
d~x

dt
· dt
ds

(13)

T̂ =
d~x

ds
(14)

(15)

• So this is how the space curve ~x changes as it moves along the curve at length s.

• It’s normalized, so it’s the same whether parameterized by t, s, or whatever.

4.2 N̂ : Normal to curve (perpendicular to T̂ )

Normal vectors are:

• ~x′′(t) normalized as
dT̂
ds

‖ dT̂
ds
‖

= N̂

• The normal vector to the curve

• ⊥ to T̂ in direction of acceleration. So a multiple of acceleration vector.

• T̂ ′(t)

‖T̂ ′(t)‖
. The following sequence shows any unit length vector is perpendicular to its

derivative.

‖T̂‖ = 1 (16)

d(‖T̂‖2) = 0 (17)

d(‖T̂‖2) = d(T̂ · T̂ ) = T̂ (t) · 2T̂ ′(t) (18)

T̂ (t) · T̂ ′(t) = 0 (19)

•
dT̂
ds

‖ dT̂
ds
‖

since it’s the same as the above, but parametrized over s instead of t. Doesn’t

change the direction of the vector!

Example:if ~x(t) = 〈R cos(ωt), R sin(ωt), 0〉, then:
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• ~a = d2~x
dt2

just by definition

• ~a = −ω2~x just by calculation

• T̂ (t) = 〈− sin(ωt), cos(ωt), 0〉

• ‖T̂ (t)‖ = 1

• N̂ = T̂ ′(t)

‖T̂ ′(t)‖
= 〈− cos(ωt),− sin(ωt), 0〉

• So ~a = Rω2N̂ by these formulae.

This leads us to believe acceleration and N̂ , the normed derivative of T̂ are related.

The part of acceleration ~a parallel to T̂ is the projection (~a · T̂ )T̂

The perpendicular part is then ~a minus that: ~a− (~a · T̂ )T̂

This also equals (dsdt )
2‖dT̂ds ‖N̂ because

~x′ =
dx

dt
= T = T̂ · ‖dx

dt
‖ (20)

s =

∫ t

0
‖~x′(t)‖ → ds

dt
= ‖~x′(t)‖ (21)

N̂ = dT̂
ds normalized, so

~a =
d2~x

dt2
=

d

dt
(‖dx
dt
‖

dx
dt

‖dxdt ‖
) =

d

dt
(‖~x′(t)‖T̂ (t)) =

d‖~x′(t)‖
dt

T̂ + ‖~x′(t)‖dT̂
dt

(22)

=
d‖~x′(t)‖

dt
T̂ +

ds

dt

dT̂

ds

ds

dt
(23)

=
d‖~x′(t)‖

dt
T̂ + (

ds

dt
)2‖dT̂

ds
‖N̂ (24)

This is “a = T̂ ’s parallel part plus T̂ ’s perpendicular (N) part”, so the second term is
a⊥

4.3 T̂ and N̂

• Form a plane, since first, any normal vector’s derivative is perpendicular to the vector

• κ is curvature: how much we’re curving in that T ×N plane.

• κ = ‖dT̂ds ‖
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• Therefore, by the definition of N̂ = dT̂ /ds

‖dT̂ /ds‖
, dT̂

ds = κN̂ (Frenet equation 1)

Note that curvature κ(s) = ‖dT̂ds ‖ is geometric (depends on s, not time) and changes as T̂
changes.

Example: Curvature of ~x(t) = 〈cos(t), sin(t), bt〉

x′(t) = 〈− sin(t), cos(t), b〉 (25)

‖x′(t)‖ =
√

1 + b2 (26)

s =

∫ t

0
‖x′(t̃)‖dt̃ =

∫ t

0

√
(1 + b2) = t

√
(1 + b2)→ t =

s√
1 + b2

(27)

Do the substitution of s√
1+b2

for t above to get x′(s), and from there, you can figure out

dT̂
ds and normalize to get κ = 1

1+b2

4.4 B̂ is binormal: perpendicular to both

• defined as B̂ = T̂ × N̂

• Therefore, by derivative

dB̂

ds
=
dT̂

ds
× N̂ + T̂ × dN̂

ds
(28)

dB̂

ds
= κN̂ × N̂ + T̂ × dN̂

ds
(29)

dB̂

ds
= T̂ × dN̂

ds
(30)

This means T is orthogonal to dB, and we already know B and dB are orthogonal.
We’re working in 3D with the cross product, so dB is parallel to N.

• Therefore, we define torsion τ so that −dB̂
ds = τN̂ (Frenet equation 2). Negative

sign by convention.

• Can also cross by N on both sides to get −dB̂
ds × N̂ = τ

• τ measures how the plane defined by T̂ , N̂ twists around. On a circle, B̂ wouldn’t
change, so the derivative would be zero.
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• Final Frenet equation. Prereq: B̂ = T̂ × N̂ → N̂ = B̂ × T̂ → T̂ = N̂ × B̂

dN̂

ds
=
dB̂

ds
× T̂ + B̂ × dT̂

ds
(31)

dN̂

ds
= −τN̂ × T̂ + B̂ × κN̂ (32)

dN̂

ds
= τB̂ − κT̂ (33)

5 Chapter 2.5: Parametrized Surfaces

Main approaches to describing a surface:

• Can parameterize by ~x(u, v) = x(u, v), y(u, v), z(u, v)

• Can perhaps parameterize f(x, y, z) = c by z = g(x, y)

• Can also use ideas like ∇f = 0 to find a normal.

There are many out-of-the-box paremetrizations including:

• Sphere at (0,0,0): ~x(u, v) = 〈R cos(u) sin(v), Rsin(u) sin(v), R cos(v)〉, where u ∈
[0, 2π), v ∈ [0, π]

• Rotate function y = f(x) around the x-axis: ~x(u, v) = 〈u, f(u) cos(v), f(u) sin(v)〉,
where u ∈ D, v ∈ [0, 2π]

Tangent vectors to ~x(u, v) are δ~x
du ,

δ~x
dv , so unit normal n̂ = ±

d~x
du
× δ~x
dv

‖ d~x
du
× δ~x
dv
‖

Example: Torus ~x = 〈[2 + cos(v)] cos(u), [2 + cos(v)] sin(u), sin(v)〉, u, v ∈ [0, 2π). What’s
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the tangent plane at u = π
4 , v = 0?

d~x/du = 〈− sin(u)(2 + cos(v)), cos(u)(2 + cos(v)), 0〉 (34)

d~x/dv = 〈− sin(v) cos(u),− sin(v) sin(u), cos(v)〉 (35)

u =
π

4
, v = 0 : (36)

d~x/du = 〈− 3√
2
,

3√
2
, 0, 〉 (37)

d~x/dv = 〈0, 0, 1〉 (38)

dx/du× dx/dv = 〈 3√
2
,

3√
2
, 0〉 (39)

n̂ = 〈 1√
2
,

1√
2
, 0〉 (40)

n̂ · ~x = 0→ n̂ · (x− x0, y − y0, z − z0) = 0 (41)

→ ...→ x+ y = 3
√

2 (42)

(43)

5.1 Example: Ellipsoid x2+2y2+z2 = 4 What’s the normal at (1, 1√
2
,
√
2)?

Method 1: parametrize with spherical u, v First, transform to sphere with change
of coordinates, then flip to speherical coordinates.

x2 + 2y2 + z2 = 4 (44)

X = x/2, Y =
Y√

2
, Z = z/2 (45)

X2 + Y 2 + Z2 = 1 (46)

X = cos(u) sin(v), Y = sin(u) sin(v), Z = cos(v) (47)

p = (1,
1√
2
,
√

2)→ u = v =
π

4
(48)

dx

du
(
π

4
,
π

4
) = 〈−1,

1√
2
, 0〉 (49)

dx

dv
(
π

4
,
π

4
) = 〈1, 1√

2
,−
√

2〉 (50)

dx

du
(
π

4
,
π

4
)× dx

dv
(
π

4
,
π

4
) = 〈1,

√
2,
√

2〉 (51)

n̂out =
〈−1,−

√
2,−
√

2〉√
5

(52)

Method 2: rewrite as z = g(x,y)
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x2 + 2y2 + z2 = 4 (53)

z = (4− x2 − 2y2)
1
2 (54)

dz/dx =
1

2
×−2x(4− x2 − 2y2)−

1
2 = − 1√

2
(55)

dz/dy =
1

2
×−4y(4− x2 − 2y2)−

1
2 = −2

√
2/
√

2 = −1 (56)

f ≈
√

2 + dz/dx(1,
1√
2

)(x− 1) + dz/dy(1,
1√
2

)(y − 1√
2

) (57)

→ ...→ 1√
2
x+ y + z = 2

√
2 (58)

(59)

giving us normal vector 〈 1√
2
, 1, 1〉 = 〈1,

√
2,
√

2〉√
5

after normalization.

Method 3: gradient

Gradient is always normal to the tangent plane. Recognize level set of f(x, y, z) = x2 +
2y2 + z2.

∇f = 〈2x, 4y, 2z〉 → ∇f(1, 1√
2
,
√

2) = 〈2, 2
√

2, 2
√

2〉

Then normalize.

5.2 Mobius strip and “outward direction”

Mobius strip is

• x = 2 cos(u) + v cos(u2 )

• y = 2 sin(u) + v cos(u2 )

• z = v sin(u2 )

• u ∈ [0, 2π], v ∈ [−1
2 ,

1
2 ]

n̂ = ~xu×~xv
‖~xu×~xv‖ at (0,0) is 〈0, 0,−1〉,

but at the same point (2π, 0) n̂ = 〈0, 0, 1〉!!

6 Chapter 2.6: Vector Fields

(Lots of intuition questions here...)
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One nugget: using gradient vector fields: Suppose ~F (x, y) = 〈2,−4y3〉. If ~F = ∇f for
some (single value function) f , then F ’s arrows are perpendicular to a level set f = c. So
look at f = 2x− y4 and find perpendicular arrows to these. That’s actually F!

Linear approximation for ~F : D ∈ Rn → Rm

Main idea: ~F (~x) = ~F (~a) +A(~a)(~x− ~a)

Note that A takes in vectors of size n (so it has as many columns as the input space), and
has m functions (rows) that operate on it. So the Jacobian, A, has as row i, column j, the
quantity dFi

dxj
(~a).

dFi/d~x extends across row i.

7 Chapter 2.7: Jack and the Beanstalk (Newton’s method)

Basis for Newton’s:

If we’re estimating x1 by following the derivative at x0, this means we’re looking at the
line with x-intercept x1, with slope f ′(x0).

So instead of y = mx+ b, we’ll flip the two and use

x = y/m+ xint

or x0 = f(x0) 1
f ′(x0) + x1,

or x1 = x0 − f(x0)
f ′(x0)

Note that, under Newton’s something like |x| will converge immediately, x3 will converge
moderately, and a S-curve might barely converge if at all.

The extension of this with the Jacobian matrixA = DF ′(x0) is ~x1 = ~x0−(D~F (~x0))−1 ~F (x0)

8 Chapter 2.8: Electrostatic bootcamp

Electric charge radiates out equally in all directions, and is inversely proportional to dis-
tance.

Formula, with Q as the charge, ε0 is a constant: ~E(x, y, z) = Q
4πε0‖x‖2 x̂

A field line is a special case of a flow line - the space curve that follows ~F ’s arrows. The
tangent vector to the flow line is ~F (~x(t̃)) (t̃ is not time here), so d~x

dt̃
= ~F (~x(t̃))

Example: Vector field ~F (x, y) = 〈−2y, 3x〉. What’s the flow line through (2,0)?
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Solution: Need to solve dx/dt = −2y, dy/dt = 3x. Key is “separating the equations”.
Remember x and y are functions of t!

d2x

dt2
= −2

dy

dt
= −2× 3x = −6x. (60)

d2y

dt2
= −2

dy

dt
= −2× 3x = −6y. (61)

x(t) = −6x′′(t), y(t) = −6y′′(t) (62)

→ x = A cos(
√

6t) +B sin(
√

6t), y = C cos(
√

6t) +D sin(
√

6t) (63)

dx

dt
= −2y(t)→

√
6

2
A sin(

√
6t)−

√
6

2
B cos(

√
6t) = y(t) (64)

x(t = 0) = 2→ A = 2 (65)

y(t = 0) = 0→ B = 0 (66)

~F (t) = 〈2 cos(
√

6t),
√

6 sin(
√

6t)〉 (67)

(68)

Note: Field lines follow rules:

• Go from positive charges to negative

• Density of lines directly relates to how much charge a point has

• Lines don’t intersect.

• Corollary: If count of out equals count of in, point has zero charge

• “Number” (to be defined) of field lines in and out of a surface related to the charge
inside. Upcoming.

9 Chapter 3: Surface integrals, Flux, Divergence

9.1 3.1: Surface Integrals

Example: Fluid pressure in a tank is:

• Proportional (via some weight constant pfluid) to depth of the point

• Pushes out via the normal n̂

• So, for the x = l side of a cube of length l, this would be

~Fx=l = (
∫∫

[0,l]×[0,l] pfluid[1−
z
l ]dydz)̂i
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Example: Hemisphere of size l, sitting at (0, 0, 0)

Finding the out pointing unit normal of hemisphere at point (x, y,
√
l2 − x2 − y2)

Note: Can just eyeball this, but one way is the gradient.

First, the relation is x2 + y2 + (z − l)2 = l2. Make it a function g and take the level set at
l2:

g(x, y, z) = x2 + y2 + (z − l)2 = l2 (69)

∇g(x, y, z) = 〈2x, 2y, 2(z − l)〉 (70)

n̂ = ± ∇g(x, y, z)

‖∇g(x, y, z)‖
(71)

n̂ = ± 〈x, y, (z − l)〉√
x2 + y2 + (z − l)2

(72)

n̂ = ±〈x, y, (z − l)〉√
l2

(73)

n̂ = ±〈x
l
,
y

l
,
z

l
− 1〉 (74)

(75)

Note: Integrating over a patch dA on the surface means finding the area of micro-patches
∆Aij , which is the parallelogram defined by

s1 = 〈∆xi, 0,∆xifx(x∗i , y
∗
j )〉 (76)

s2 = 〈0,∆yj ,∆yjfy(x∗i , y∗j )〉 (77)

∆Aij ≈ ‖s1 × s2‖ (78)

=
√

(1 + [fx(x∗i , y
∗
j )]

2 + [fy(x∗i , y
∗
j )]

2∆xi∆yj (79)

(80)

So if z = f(x, y), dA =
√

1 + f2
x + f2

y .
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So the total pressure ends up being ~Ftot = pfluid
∫∫

(p · n̂)dA

= pfluid

∫∫
x2+y2≤l2

[1− f(x, y)

l
]n̂
√

1 + [fx]2 + [fy]2dxdy (81)

f(x, y) = l −
√
l2 − x2 − y2 (82)

n̂ = 〈x
l
,
t

l
,
f(x, y)

l
− 1〉 (83)

fx =
x√

l2 − x2 − y2
, fy =

y√
l2 − x2 − y2

(84)

And for the only-nonzero component, k̂, this simplifies after a lot of hand-math to Ftot =

−pfluid(
∫∫
x2+y2≤l2

√
1− (x

2+y2

l2
)dxdy)k̂

Side Note during solving: dxdy → rdrdθ.

• TODO: This looks to be something to do with the determinant of the Jacobian matrix
Fi/xj .

• Intuitively, consider that a patch dx · dy is a slice of a big disk which has dimensions
dr on the ray, rdθ on the arc.

10 3.2: Flux Part I

Main idea: Field lines are innumerable, so counting them through a surface makes no
sense. Instead, we’ll use flux to help us measure charge pushed through a surface per unit
time.

Example: If charge q of mass m in a field of ~E = E0î moves from origin along x towards R
according to d2x

dt2
= q

mE0, then solving the diff eq. means that x = q
2mE0(∆t)2 = R. This

means we’re pushing all charges within q
2mE0(∆t)2 to the left of the disk through it.

Then, if we’re considering a cylinder of base area A, mass density δ, charge density ρ:

• Every test charge chunk ∆V within ρ∆V
2δ∆V E0(∆t)2 passes through. That’s the height.

• Area is A, so total volume is ρ(∆t)2

2δ E0A

• Density of charge per volume is ρ, so total is ρ2(∆t)2

2δ E0A

Note: Tilting this forward from the z-axis by θ multiplies the cross-section area of the
cylinder (now an ellipse) by cos(θ). Can work out the ellipse volume, or just note that each
“Riemann bar” orthogonal to x-axis just got squished by cos(θ).
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So we define flux as amount of charge through a closed surface. Φ = ( ~E · n̂)A if ~E is

a constant field. (Units: joules/second/m2, or watts/m2), and Φ =
∫∫
S( ~E · n̂)dA gener-

ally.

We can further note ( ~E · n̂) = ‖ ~E‖ cos(θ) by last problem.

Example: Flux through an empty cube from the origin is necessarily 0 since every face
cancels the other.

Another example: A square pyramind with top at (0, 0, 1), sides at 1 on each axis:

• All the triangles will cancel in the x, y directions.

• A triangle (1, 0, 0)(0, 1, 0), (0, 0, 1) has two displacement vectors P1P3 = P3 − P1 =
(−1, 0, 1), P2P3 = (0,−1, 1).

• P1P3 × P2P3 = (1, 1, 1)→ n̂ = (1,1,1)√
3

• A = 1
2‖P1P3 × P2P3‖ =

√
3

2

• Φ = ( ~E · n̂)A = (E0
1√
3
)
√

3
2 = E0

2

• So total flux through these is 4 · 1
2E0 = 2E0

• However, the bottom has area
√

2
2

= 2 and flux E0 , so total is 0!

11 3.3: Flux Part II

Note:

• Charge (q) is the volts of the point charge. Total charge Qtot is total charge inside
some surface.

• Electric field is sum of those point charges acting at a distance, and a is a single
vector.

• Flux is the sum of the electric field flowing through a surface.

• Total charge Qtot of a surface is basically the sum of all the flux going in/out, except
that it’s that divided by some constant ε0.

Note: ~E isn’t usually constant, and the surface S is usually curved. So we need calculus to
break up surface S into small pieces ∆Ai and evaluate ~Ei there at that normal n̂i. So∑

patches(
~Ei · n̂i)∆Ai =

∫∫
S( ~E · n̂))dA = Φ
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Easy Example: If, say, ( ~E · n̂) = 1 everywhere, we’re just looking at
∫∫
S dA, or the total

surface area.

Another example. Given:

• Real electric field law: ~E = q
4πε0

~x
‖~x‖3

• Real observation: Total electric flux through a surface (Φ) is proportional to total
charge inside (Qtot). Φ =

∫∫
S( ~E · n̂)∆A ∝ Qtot

• Then constant must be 1
ε0

. Why?

– On unit sphere, n̂ = ~x
‖~x‖

– So ~E · n̂ = q
4πε0

~x
‖~x‖3 · n̂

– = q
4πε0

since ‖~x‖ = 1 on unit sphere

– Then Φ =
∫∫
S

q
4πε0

dA

– = q
4πε0

4π by surface area of unit sphere

– = q
ε0

• Therefore, because all of the field goes through the surface (no matter the shape),

Gauss’s law says
∫∫
S( ~E · ~n)dA = Qtot

ε0

Note: Because (UNEXPLAINED!) symmetry of a contained ball implies that, for distance
ρ from origin, ~E = E(ρ)ρ̂, the above works the same for a point charge or a uniform
(contained) ball.

Example: For a big radius R ball of charge Q containing a small ball of radius ρ with
charge Qtot, what must the charge E(ρ) at any point be?

• Small charge Qtot is proportional to volume of the big charge Q by Qtot = QVsmall
Vbig

=

Q ρ3

R3

• Qtot
ε0

= total charge =
∫∫
S E(ρ)(‖ρ̂‖)dA = E(ρ)

∫∫
S 1dA = E(ρ)4πρ2

• So Qtot
ε0

= Q ρ3

R3ε0
= E(ρ)4πρ2

• So E(ρ) = Q
4πε0

ρ
R3

Example: Infinite wire, x=y=0, charge per length is λ. What’s the magnitude of the field
r units away?

• Use a cylinder.

15



• What’s the total charge of the cylinder? Top and bottom are perpendicular to the
field so can be ignored.

• There’s some function E(r) which, time r̂, is the field by symmetry.

• Φ =
∫∫
cylinder(E(r) · r̂)dA = E(r)

∫∫
cylinder 1dA = E(r)2πrh.

• Qtot
ε0

= E(r)2πrh⇒ E(r) = λ
2πε0r

Example: Infinite plane, x=y=0, charge per area is σ. What’s the mangitude of the field
at height h?

• Use a cylinder again

• What’s the total charge of the cylinder? Side is perpendicular to the field so can be
ignored. Looking at top and bottom, φ = 2EA + 2EA., where E is charge through
the top.

• 2EA = σA
ε0
→ E = σ

2ε0

• Note: It appears it’s height-invariant!

12 3.4: Surface Integrals

• Flux is a specific form of the general
∫∫
S Fda.

• dA is a patch of a parallelogram on the surface. This is defined by corners ~x(u0, v0), ~x(u0, v0)+
δu~x(u0, v0), and ~x(u0, v0) + δv~x(u0, v0)

• Therefore, using the parallelogram area formula,dA = ∆u∆v‖~xu × ~xv‖

• Taking to the limit, this means the area is
∫∫
D F (~x(u, v))‖~xu × ~xv‖dudv

Example: Sphere x2 + y2 + z2 = R2 surface area. Take θ as angle around φ as angle from
top of z axis.

• Parametrization x = R sinφ cos θ, y = R sinφ sin θ, z = R cosφ

• dx/dθ = −R sinφ sin θ, dy/dθ = R sinφ cos θ, dz/dθ = 0

• dx/dφ = R cosφ cos θ, dy/dφ = R cosφ sin θ, dz/dφ = −R sinφ

• After working it out, dx/dθ × dx/dφ = R2 sinφ〈− sinφ cos θ,− sinφ sin θ,− cosφ〉

• Doing the math, ‖dx/dθ × dx/dφ‖ = R2 sinφ

• So
∫ 2π
θ=0

∫ π
φ=0 1 ·R2 sinφ = 2π

∫
φ=0 πR

2 sinφ = 2πR2[− cosφ]π0 = 4πR2

Example: Parabaloid z = 1− x2 − y2, x2 + y2 ≤ 1
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• Parametrization x = R sinφ cos θ, y = R sinφ sin θ, z = R cosφ

• dz/dx = 〈1, 0,−2x〉, dz/dy = 〈0,−1,−2y〉

• ‖dz/dx× dz/dy‖ = 1 + 4x2 + 4y2

• Area =
∫∫
D 1 · dA =

∫∫
D

√
1 + 4x2 + 4y2dxdy

• Change to polar, remembering this square depends on r:
∫ 2π
θ=0

∫ 1
r=0

√
1 + 4r2 cos2 π4r2 sin2 πrdrdθ =

2π
∫ 1

0

√
1 + 4r2rdr

• After working it out, this ends up being [2
3 ·

1
8(4r2 + 1)

3
2 ]10 = π

6 (5
√

5− 1)

Example: Torus x(u, v) = [R+r cos(u)] sin(v)], y(u, v) = [R+r cos(u)] cos(v)], z = r sin(u), u, v ∈
[0, 2π)

• Already parametrized in polar, basically,

• d~x/du = 〈−r sin(u) sin(v),−r sin(u) cos(v), r cos(u)〉

• d~x/dv = 〈Rcos(v) + r cos(u) cos(v),−R sin(v)− r cos(v) sin(v), 0〉

• After lots of math, ‖d~x/du× ~x/dv‖ = r(R+ r cos(u))

•
∫ 2π
u=0

∫ 2π
v=0 r(R+ r cos(u)du = 2πr

∫ 2π
u=0 r(R+ r cos(u))du

• = 2πr[2πR] = 4π2Rr

Example: Center of mass of unit (hollow?) hemisphere sitting on origin.

• Center of mass for density ρ is
∫∫
S ~xρdA∫∫
S ρdA

• Obvious that x, y center at zero.

• For denominator,
∫∫
S dA is just surface area, or half of 4π12 = 2π.

• For numerator:

– Do typical θ, φ parametrization.

– ~xθ × ~xφ = 〈sin2(φ) cos(θ), sin2(φ) sin(θ), sin(φ) cos(φ)〉

– Pull out the sin(φ) and the remaining norm is one, so ‖~xθ × ~xφ‖ = sin(φ)

–
∫ 2π
θ=0

∫ π/2
φ=0 z · dA =

∫ 2π
θ=0

∫ π/2
φ=0 cos(φ) sin(φ) = 1

2

Example: Moment of inertia

• Formula: Iz = M
∫∫
S(x2 + y2)dA.

• Object to spin: helicoid ~x(θ, v) = 〈θ cos(v), θ sin(v), v〉θ ∈ [0, R], v ∈ [0, 2π]
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• Assumption for the problem:
∫ θ=R
θ=0 θ2

√
1 + θ2dθ = 2

• Center of mass for density ρ is
∫∫
S ~xρdA∫∫
S ρdA

• Use polar coordinates r, θ.

• After computation, ‖~xr × ~xθ‖ =
√

1 + r2

• M
∫ r=R
r=0

∫ θ=2π
θ=0

√
1 + r2(r2 cos2(θ)+r2 cos2(θ))dA = M

∫∫ √
1 + r2r2 = 2πM

∫∫ √
1 + r2r2 =

4π by hint

Example: Flux through unit hemisphere

• Formula: Φ =
∫∫
S( ~E · ~n)dA =

∫∫
S FdA

• Field: ~E = 〈yz, xz, xy〉

• Use polar coordinates

• Base: n̂ = −k̂ so 〈yz, xz, xy〉·〈0, 0,−1〉 = −xy It’s clear by symmetry that
∫∫
u2+v2≤1−xydxdy =

0

• Top: Set u = θ ∈ [0, 2π), v = φ ∈ [0, π2 ].

• As usual, dA = ‖~xu × ~xv‖ = sin(v).

• Norm just points out from the center: n̂ = 〈cos(u) sin(v), sin(u) sin(v), cos(v)〉

• ~E = 〈sin(u) sin(v) cos(v), cos(u) sin(v) cos(v), cos(u) sin2(v) sin(u)〉

• So ~E · n̂ = 3 cos(u) sin(u) cos(v) sin2(v)

• Looking at this, this is really
∫ u=2π
u=0 k(v) sin2(u) for some k(v), so this will be 0.

• Therefore, total flux is zero, and by Gauss’s law, total field contained inside has to
be 0 too.

Example: Field ~E = ln(x2 + y2)〈x, y, 0〉 through R-wide cylinder, height h

• Parameterize: x = r cos θ, y = r sin θ, z = z

• Top/Bottom: n̂ = 〈0, 0, 1〉, ~E = f(x, y)〈x, y, 0〉 → n̂ · ~E = 0

• Side: n̂ = 1
R〈R cos(θ), R sin(θ), 0〉

• Φ =
∫∫
cylinder

1
R〈R cos(θ), R sin(θ), 0〉·〈R cos(θ), R sin(θ), 0〉 ln(R2 cos2(θ)+R2 sin2(θ))

• = R
∫∫
cylinder ln(R2) + ln(cos2(θ) + sin2(θ)) = R · 2 ln(R) · h · 2πR = 4πR2 ln(R)h

Example: Field ~E = e−x
2−y2−z2~x with sphere S at radius R, setting ε0 = 1
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• Parameterize: x = R cos(θ) sin(φ), y = R sin(θ) sin(φ), z = R cos(phi)

• n̂ = 〈cos(θ) sin(φ), y = sin(θ) sin(φ), z = cos(phi)〉

• ~x = Rn̂, so ~E · n = Re−R
2

• R
∫∫
sphere e

−R2
= 4πR3e−R

2

Note: In the future we write n̂dA = ~dA

12.1 3.5: Divergence part I

Main idea: Last chapter was all about having field ~E and wanting to figure out Qtot (or
φ
ε0

). Usually, we have the charge distribution Q and want to figure out ~E. Most of the field
derivation from 3.3 was through tricks for highly symmetric spaces (infinite line, infinite
plane, uniform ball, etc.)

Point: The flux through a sphere in a uniform field is zero. Why? Move the center point
to the origin, rotate so field is k̂ (both don’t change the flux), and consider that what goes
out at 〈x, y, z〉 comes in at 〈x, y,−z〉. This same argument applies for

∫∫
S=sphere n̂in̂jdA,

where i, j are components in {x, y, z}.

However, if i = j, then
∫∫
S n̂in̂jdA =

∫∫
S n̂

2
i = 4

3πR
2, since

∫∫
S(n̂2

x + n̂2
y + n̂2

z)dA =∫∫
S 1dA = 4πR2, so each of the components must be a third of that.

12.1.1 Defining Divergence

Remember that, in Gauss’s law Q
ε0

=
∫∫
S
~E · ~dA, we’re using information about ~E spread

out over surface S. We can also shrink this to a smaller surface.

Shrinking to a point ~P , limR→0
1

4πR3

∫∫
S
~E · ~dA = Qtot

ε04πR3 = ρ(~P )
ε0

. ( This works by dividing
both sides by volume of a sphere)

Deriving Divergence: Computing limR→0
1

4πR3

∫∫
S
~E · ~dA

•
∫∫
S n̂in̂jdA = 0 if i 6= j

•
∫∫
S n̂in̂jdA = 4

3πR
3 if i = j

• Use linear approximation with Jacobian D = δEi
δxj

, ~E(~x) = ~E(~P ) +D~E(~P )(~x− ~P )

•
∫∫
S
~E(~P ) = 0 for any constant. (think of the flux of a sphere in a constant field as

above)

• This leaves D~E(~P )(~x− ~P ) · n̂ =
∑

i,j n̂i[~x− ~P ]jD~E(~P )ij

• Since it’s a sphere, the normal n̂ = ~x−~P
R
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• Therefore D~E(~P )(~x− ~P ) · n̂ = R
∑
n̂in̂jD~E(~P )ij (swap Rn̂j for [~x− ~P ]j)

• These terms are all 0 except where i = j, so D~E(~P )(~x− ~P ) · n̂ = 4
3πR

2×R× [ δExδx +
δEy
δy + δEz

δz ]

• This equals limR→0
1

4πR3

∫∫
S
~E · ~dA so eliminating the sphere volume gives us

ρ(~P )
ε0

= [ δExδx +
δEy
δy + δEz

δz ] = ∇ · ~E

We can think of the divergence ∇, also like an operator:

∇ · ~F = ∇ · (Fxî+ Fxĵ + Fxk̂) = ( δ
δx î+ δ

δy ĵ + δ
δz k̂) · (Fxî+ Fxĵ + Fxk̂)

Shifting to Cylindrical Coordinates: If instead we want to describe ~F = ~Frr̂ + ~Fθθ̂ +

~Fz ẑ, we have ∇ · ~F = 1
r
δrFR
δr + 1

r
δFθ
δθ + Fz

δFz
δz . How to derive?

• Note identities r̂ = cos(θ)̂i + sin(θ)ĵ, θ̂ = − sin(θ)̂i + cos(θ)ĵ. If θ = 0, these point
right and up, corresponding to î, ĵ. If θ rotates, these do too.

• Fxî+ Fy ĵ + Fzk̂ = ~F = (Fr(cos(θ)̂i+ sin(θ)ĵ) + Fθ(− sin(θ)̂i+ cos(θ)ĵ) + Fzk̂

• Rearrange so that ~F = Fxî + Fxĵ + Fxk̂ = (Fr cos(θ) + Fθ(− sin(θ))̂i + (Fr sin(θ) +
Fθ cos(θ))ĵ + Fzk̂.

• Compute δ
δx = δ

δr
δr
δx + δ

δθ
δθ
δx = δ

δx = cos(θ) δδr −
sin(θ)
r

δ
δθ .

– The second term: dθ
dx = tan−1(y/x)) = y

1+y2/x2
∗ −1
x2

= − r sin(θ)

r2(sin2 + cos2)
= − sin(θ)

r

• Do something similar for similar for d
dy in the second term.

• Combine and shake it out.

Shifting to Spherical Coordinates: Using a similar process, we get

∇ · ~F = 1
ρ2
δ(ρ2Fρ)
δρ + 1

ρ sin(φ)
δ
δφ(sin(φ)Fφ) + 1

ρ sin(φ)
δFθ
δθ

12.2 3.6: Divergence Part 2

Example: Compute divergence of electric field E = Q
4πε0

~x
‖~x‖3 outside radius R.

• δEx
δx ( Q

4πε0
x

(x2+y2+z2)
3
2

) = v −2x2+y2+z2

(x2+y2+z2)
5
2

.

• Symmetrical for
δEy
δy ,

δEz
δz

• Sums to 0.

Example: Compute divergence of electric field E = Q
4πε0

~x
R3 inside radius R.
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• δEx
δx ( Q

4πε0
x
R3 ) = Q

4πε0
1
R3

• Symmetrical for
δEy
δy ,

δEz
δz

• Sums to Q
4πε0

3
R3

So, the divergence of an electric field is proportional to Q
R3 inside the sphere, and 0 outside

the sphere.

So, divergence at a point intuitively measures how much the field spreads out or sinks

into the point. For electric charge, ∇ · ~E = ρ
ε0

means that at that point, the spready-ness

is proportional to the charge.

Example: if ε0 = 1 and the field is ~E = xî + 2yĵ + zk̂, how much charge is in the
[0, 1]× [0, 1]× [0, 1] box?

• Answer: ρ = ∇ · ~E = 1 + 2 + 1 = 4. So 4 units.

Another Example: if ~E = sin(yz)̂i+ sin(xz)ĵ+ sin(xy)k̂ in some complicated surface, then
what?

• Noticing that ∇ · ~E = 0 shows you this is 0 no matter the shape of the region. This
means the vectors pointing into the region (in fact, any part of the space) are balanced
out by those pointing out from the region.

12.3 3.7: The Divergence Theorem

The Divergence Theorem falls out of equating finding charge Q with a double integral
over a bounded surface with the triple integral of the contained volume:

• Q
ε0

=
∫∫
S
~E · ~dA (Gauss’s law)

• ⇒ ∇ · ~E = ρ
ε0

within R (Proved Divergence equivalent from last section)

• Q =
∫∫∫

R ρdxdydz (Just integrating charge over volume)

• ⇒ Q =
∫∫∫

R ρdxdydz = ε0
∫∫∫

R∇ · ~Edxdydz = ε0
∫∫
S
~E · ~dA

• ⇒
∫∫
S
~E · ~dA =

∫∫∫
R∇ · ~Edxdydz (Divergence Theorem). Integrating the field over

the bounding surface is the same as integrating the divergence over the volume.

Smooshy thought: This looks like another version of Fundamental Theorem of Calculus.
The integral of the function evaluated at the boundaries is the same as the function summed
inside the boundary.
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Proving Divergence Generally: We’re gluing micro-cubes together and not changing
the total flux. This means any surface is the flux going in and out of its ”skin”.

• Note that since the flux outward through a cube face is the negative of it inward,
gluing two cubes together on this face means we’re summing the total fluxes.

• Do this for tiny cubes approximating the surface we care about.

• In a cube centered on point P, F ≈ ~F (P ) +D~F (P )(~x− ~P ).

•
∫∫
S
~F (P ) ~dA = 0 since it’s constant, since every face i has normal n̂i, and a partner

of equal size with normal −n̂i.

• However, for a cube of side ε the flux through, say, Face I (x = ε+P ) is
∫∫
S D

~F (P )(~x−
~P ) ends up being δFx

δx 4ε3, since:

– Consider side x = px + ε

– D~F (P )(~x− ~P ) · n̂ = [D~F (P )]xx(x−px)+[D~F (P )]xy(x−py)+[D~F (P )]xz(z−pz).

– So, the functons that consider the inputs of y, z don’t matter.

– So
∫∫
FaceI(y − py)dA = 0 around py by symmetry. Same for z on that face.

– But for x,
∫∫
FaceI(x− px)dA =

∫ py+ε
py−ε

∫ pz+ε
pz−ε εdydz = 4ε3

– Dij
~F (P ) is constant for all i, j ∈ {x, y, z}, so this face is then δFx

δx 4ε3.

– Summing the opposite face (with the same flux), yields δFx
δx 8ε3 = δFx

δx V .

– Summing across the other faces yields δFx
δx V +

δFy
δy V + δFz

δz V .

Finally, this shows the flux on one of these microcubes is ∇ · ~F (P )V .

In total, the divergence theorem:
∫∫
δC

~F · ~dA ≈ ∇ · ~F (P )V ≈
∫∫∫

C ∇ · ~Fdxdydz

Example of using divergence to calculate flux: Unit hemisphere with ~E = 〈yz, xz, xy〉:
Answer : ∇ · ~E = δ

δxyz + δ
δyxz + δ

δzxy = 0

Example of using divergence to calculate flux: Cylinder of radius R, height h, sitting
on z = 0 with ~E = ln(x2 + y2)〈x, y, 0〉:
Answer:

• δ
δxEx = ln(x2 + y2) + 2x2

x2+y2
. Similar for Ey.

• Transform to polar: Ex + Ey = ln(r2) + 2r2 cos(θ)2+r2 sin(θ)2

r2
= 2 ln(r) + 2

• Set up the integral, remembering the Jacobian: Φ = 2π
∫ h
z=0

∫ r=R
r=0 [2 ln(r) + 2]rdrdθ
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• Working it out, with identity
∫
x ln(x) = −x2

4 + x2

2 ln(x), you get Φ = 4φR2] ln(R)h

Example of using divergence to calculate flux: Unit sphere at origin with ~E =
(x3 + y3)̂i+ (z3 + y3)ĵ + (x3 + z3)k̂
Answer:

• Ex + Ey + Ez = 3x2 + 3y2 + 3z2 = 3
∫∫∫

ρ2dxdydz

• Each dρ is a sphere of volume 4πf(ρ)2 = 4πρ4

• So the integral is 12π
∫ ρ=1
ρ=0 ρ

4 = 12π
5

Example of using divergence to calculate flux: ~F = (cos(z) + x2)̂i,+(xe−z)ĵ +
(sin(y) + x2z)k̂ on parabaloid z = x2 + y2, z ≤ 4 with top x2 + y2 ≤ 4, z = 4

•
∫∫∫

R∇ · ~E =
∫ 4
z=r2

∫ 2
x2+y2=0(y2 + x2)dxdydz

•
∫∫∫

R∇ · ~E =
∫ 2π
θ=0

∫ 2
r=0

∫ 4
z=r2(r2 cos2(θ) + r2 sin2(θ))rdθdrdz = r3dθdrdz

• = 2π
∫ 2
r=0 4r3 − r5 = 2π[r4 − r6

6 ]20 = 32
3 π.

What’s crazy: Evaluating divergence of a point charge ~E = Q
4πε0

~x
‖~x‖3

• δ
δxEx = Q

4πε0
δ
δxx(x2 + y2 + z2) = −2x2+y2+z2

(x2+y2+z2)
5
2

• Ey, Ez follow symmetrically.

• The sum is infinite at the origin and zero everywhere else

• Therefore, they had to invent a δ function that is infinite at origin, 0 elsewhere, and∫∫∫
R3 δ(~x) = 1

12.4 3.8: Divergence and Fluids

Looking back to section 3.1, this hydrostatic force function should follow similar patterns

to flux: ~Ftot =
∫∫
S pn̂dA .

Extended Example: A round ball of radius R, center at depth h , with force ~Ftot =
p0

∫∫
S [1− z

h ]n̂dA.

• n̂ = 〈x,y,z〉
R

• For the integral, note that x, y are completely symmetric around z axis, so they
contribute 0.

• For the integral, we’re then looking at p0
R

∫∫
S [1− z

h ]zdA
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• Use spherical coordinates: p0
R

∫∫
S [1− R cos(φ)

h ]R cos(φ)dA

• Working through dA =
√

1 + f2
x + f2

y dxdy with f = R −
√
R2 + x2 + y2, we get

dA = dxdy√
(1−x2+y2

R2 )

• This dA term, in spherical coordinates, becomes R2 sin(φ)dφdθ

• Combining and substituting u = cos(φ), this integral is −4πR3

3
p0
h k̂

The neat idea: Ftot = 4πR3

3 ×−p0
h k̂ is really “ball’s volume” times a constant.

• 4πR3

3 ×−p0
h k̂

• =
∫∫∫

B 1dxdydz ×−p0
h k̂

• =
∫∫∫

B(−p0
h )k̂dxdydz, with p = p0[1− z

h ]

• =
∫∫∫

B(∆p
δz )k̂dxdydz

• =
∫∫∫

B∇ · pdxdydz

• So the upshot is the divergence theorem again:
∫∫
S pn̂dA =

∫∫∫
B∇ · pdxdydz =

∫∫∫
B∇ · pd~x

Final example three ways: “oxygen flow” (really, flux) through ball of radius R at origin,
under field J = j0î.

• Intuitive: what comes in at (-x, y, z) goes out at (x, y, z), so total is zero.

• Flux integra under spherical:
∫∫

~F n̂dA =
∫∫
S j0î·

〈x,y,z〉
R dA =

∫ 2π
θ=0

∫ π
φ=0 j0 cos(θ) sin(φ)R2 sin(θ)dθdφ =

0 = πj0R2

2

∫ 2π
θ=0 cos(θ)dθ = 0

• Divergence: ∇ · ~J = δ
δxj0 + 0 + 0 = 0, so

∫∫∫
B 0 = 0.

12.5 3.9: Flows and Divergence

Main idea: Divergence (∇ · ~V ) measures how much the flow changes volumes at that
point.

Example: What is the function described by field of velocity vectors ~V (~x) = 〈−y, x〉?

• x′(t) = −y, y′(t) = x

• ⇒ x′′(t) = −y′ = −x, y′′(t) = x′ = −y

• ⇒ x = A cos(t)+B sin(t), y = C cos(t)+D sin(t), work it out to x = cos(t), y = sin(t)
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Idea: dump a dA = s1 by s2 = ∆xî ×∆yĵrectangle into the flow and see how it deforms
over time. Over a long time, it’ll distort a lot, but consider for ∆t:

• dA has sides of length ∆x,∆y but area of dA: ‖s1 × s2‖ (cross product norm is
parallelogram area)

• What is side s1 after ∆t? The starting point plus (how the endpoint moves minus
how the start point moves): ~s1 + ∆t[~V (x0 + ∆x, y0)− ~V (x0, y0)]

• Expanding the iterated s1, which we call s′1 out: ~s1
′ = ∆x[(1 + ∆t δVxδx )̂i + ∆t

δVy
δx ĵ].

Do the same for s′2 and work out in 3D: s′1 × s′2 ≈ ∆x∆y[k̂ + ∆t[(Vx)x + (Vy)y]k̂

• We end up with s′1× s′2 ≈ ∆x∆y[1 + ∆t∇ · ~V ]k̂, so vs. original area ∆x∆y, the ratio
is 1 + ∆t∇ · ~V

• This means divergence ∇ · ~V is proportional to the change in area due to
the flow!

An incompressible field preserves volume under flow (so∇·~V = 0), like 〈y, z, x〉, 〈0, 2
√
x, 0〉, 〈x, y,−2z〉.

A cool interactive on the page shows how a sphere migrating its points via 〈x, y, z〉 grows
and changes volume, while one under 0.3〈y, z, x〉 distorts but doesn’t.

13 Chapter 4: Work, Line Integrals, Stokes’s Theorem

13.1 4.1: Work Part I

Energy: U is a position-consuming function, an example of a potential. Energy U for

charge amount q in field ~E is −q ~E = ∇U .

Example: Right-pointing constant field ~E = E0î means ( δ
δx î + δ

δy ĵ + δ
δz k̂)U = −qE0î ⇒

U = −qE0x

Work is change in energy, e.g. Wfield = −[U( ~xf )− U( ~x0)]. If the charge flows with the

field, then the field is doing positive work. If the charge flows against the field, the field
is doing negative work. So in the above case, Wfield = −[U(xf , 0, 0)) − U(x0, 0, 0)] ⇒
−[−qE0xf −−qE0x0 = qE0(xf − x0).

Continuing the example, moving from (x0, 0, z0) to (xf , 0, zf ) in ~E = E0î: only the x-
coordinate affects the energy, so U(x) = −qE0x and Wfield = qE0(xf − x0). If s is the

distance between the two, then cos(θ) =
|xf−x0|

s ⇒Wfield = qE0s cos(θ).

Expanding the example, consider ~E(~x) = ~E0, a constant that may not be aligned just with
x-axis. Then −q ~E = ∇U ⇒ ∇(−q ~E0~x+C) = −q ~E ⇒ U = −q ~E0~x+C. Can also solve the
diff eq, more generally. This also means that, still, Wfield = q ~E0( ~xf − ~x0).
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Big idea: Though most fields aren’t constant, they are near-constant between a small
displacement ∆x.

Wfield = q ~E ·∆~x (85)

=
∑

q ~E(~x(ti)) · [~x(ti+1)− ~x(ti)] (86)

=
∑

q ~E(~x(ti))
∆x(ti+1)

∆t
∆t =

∫ b

a
q ~E(~x(t)) · d~x

dt
dt (87)

So we can take a line integral to measure work over a path in a field.

13.2 4.2: Work Part 2

In general, the work for moving a charge q along path ~x(t) through field ~E(~x) is W =
∫ b
a q

~E(~x(t)) · d~xdt dt .

More generally, q ~E is just a force, so we’re looking at Wfield =
∫ b
a
~F (~x(t)) · d~xdt dt

Example: ~x(t) = 〈t+ 1, t+ 1, t〉, t ∈ [0, 8], ~E(x, y, z) = λ
2πε0

xî+yĵ
x2+y2

W =
qλ

2πε0

∫ 8

t=0

〈t+ 1, t+ 1, t〉 · 〈1, 1, 0〉
2(t+ 1)2

(88)

=
qλ

2πε0

∫ 8

t=0

1

t+ 1
(89)

=
qλ

2πε0

∫ 9

u=1

1

u
(90)

=
qλ

2πε0
ln(9) (91)

However, what happens if we keep the endpoints but change the path?

Extended example: ~x(t) = 〈
√

2t cos(πt4 ),
√

2t sin(πt4 ), t−1〉, still with ~E(x, y, z) = λ
2πε0

xî+yĵ
x2+y2

.

~E(~x(t)) · d~x
dt

= ... = 2t (92)

x2 + y2 = 2t2 (93)

W =
qλ

2πε0

∫ 9

1=1

1

t
(94)

=
qλ

2πε0
ln(9) (95)

26



So it looks like there might be path independence here. Consider: rubbing your hands
together - is there more work done oscillating and ending at the initial position than doing
nothing? (Clearly yes).

Example: Work due to friction. ~F = −γ d~xdt , γ > 0. Move from (0, 0, 0) → (1, 0, 0) via

~x(t) = 〈t, 0, 0〉. If γ = 1, what is
∫ b
a
~F (~x(t)) · d~xdt dt?

Answer: −
∫ 1
t=0

d~x
dt

2
dt = −

∫ 1
t=0〈1, 0, 0〉

2 = −1 We lose 1 unit of energy.

To illustrate that there’s not path independence always, consider an oscillating object
following ~x(t) = 〈t, sin(nπt), sin(nπt)〉, t ∈ [0, 1]. Take γ = 1 so ~F = ~x′(t).

Answer: −
∫ 1
t=0 ~x

′(t) · ~x′(t)dt = −
∫ 1
t=0(1 + 2n2π2 cos2(nπt))dt = −

∫ 1
t=0(1 + 2n2π2 1

2(1 +

cos(2nπt))dt = −
∫ 1
t=0(1 + n2π2 + 2n2π2 cos(2nπt))dt = −[t + tn2π2 = +nπ sin(2nπt)]10 =

−[1 + n2π2]

Example: Spring force ~F = −‖x−l0‖‖x‖ ~x along path ~x(t) = 〈0, 1− t, 2t〉, t ∈ [0, 1]

Answer:
∫ 1
t=0

~F (~x(t))d~xdt dt = −
∫ 1
t=0

√
5t2−2t+1−1√

5t2−2t+1
〈0, 1− t, 2t〉 · 〈0,−1, 2〉 =

∫ 1
0 [1− (5t2 − 2t+

1)
−1
2 ](−1 + 5t)dt = −[−t+ 5

2 t
2 − (5t2 − 2t+ 1)

1
2 ]10 = −1

2

Example: SAME Spring force ~F = −‖x−l0‖‖x‖ ~x and SAME endpoints but along path ~x(t) =

〈0, cos(t), 2 sin(t)〉, t ∈ [0, 1]

Answer:
∫ π/2
t=0

~F (~x(t))d~xdt dt = −
∫ π/2
t=0 (1− 1

‖x‖)〈0, cos(t), 2 sin(t)·〈0,− sin(t), 2 cos(t)〉 = −3
∫ π/2

0 sin(t) cos(t)(1−
1√

1+3t2
dt = 3

∫ π/2
t=0 − sin(t) cos(t) + 3

∫ π/2
t=0 sin(t) cos(t) 1√

1+3 sin2(t)
= 3[1

2 cos2(t)]
π/2
0 + 3[2

6(1 +

3 sin2(t))1/2]
π/2
0 = −1/2

So sometimes path does not matter (electricity and spring) but sometimes it seems to mat-
ter (friction). Something about the “swirl” of the field (curl)? Addressed upcoming.

13.3 4.3: Line Integrals

A line integral is

• Most generally:
∫ s=l
s=0 f(~x(s))ds or

∫
C fds.

• Built out of function heights hi over curve snippet lengths ∆si :
∑

i hi∆si.

• More practically written as
∑
f(xi, yi)

√
[∆x]2 + [∆y]2

• Riemanned up:
∫ s=l
s=0 f(~x(s))ds

• Practical integral based off of some t :
∫
C f(~x(t))‖~x′(t)‖dt
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Example: Area of curtain, height = f(x, y) = y2, base is origin circle of radius 2 on
xy-plane.

• A =
∫ t=2π
t=0 f(x, y)‖d<2 cos(t),2 sin(t),0>

dt ‖dt

• A =
∫ t=2π
t=0 4 sin2(t) ∗ 2 = 4

∫ t=2π
t=0 (1− cos(2t)) = 4[t− sin(2t)

2 ]2π0 = 8π

Example: Geometric area of f(x, y) = 4y3 over the curve x = y3

3 , (
−1
3 , 1)→ (1

3 , 1)

• ~x(t) = 〈t3/3, t〉 ⇒ ~x′(t) = 〈t2, 1〉 ⇒ ‖~x′(t)‖ = ‖
√

1 + t4‖

• Note that this is an odd function: the part where y ∈ [−1, 0] is a negative of [0,1].
So we’ll double the right half.

• A = 2
∫ t=1
t=0 4t3

√
1 + t4dt = [4

3(1 + t4)
3
2 ]10 = 4

3 [2
√

2− 1]

Example: Moment of interatia around z-axis:
∫

[x2+y2]ρds for ~x(t) = 〈2 sin(t), 2 cos(t), 3t〉t ∈
[0, 2π] if ρ = 1

2π
√

13
:

• ~x′(t) = 〈2 cos(t), 2 sin(t), 3⇒ ‖~x′(t)‖ =
√

4 + 9

• x2 + y2 = (2 sin(t))2 + (2 cos(t))2 = 4

• A = ρ ∗
∫ t=2π
t=0 4

√
13 = 1

2π
√

13
∗ 2π ∗ 4

√
13 = 4

Example: Infinite wire of current going up on the z-axis. Field equation, for (generated?)
field ~B, penetrated region bounded by curve C, unit tangent (to the curve) T̂ , constant

µ0 and current amount I:
∫
C [ ~B · T̂ ]ds = µ0I . What is ‖ ~B‖ at some distance from the

z-axis r?

• C should be a circle of radius r. Then, ds = d~x
dt dt = r‖ cos(t), sin(t)‖ = r

• ~B = ‖B‖T̂ by definition I suppose.

•
∫ t=2π
t=0 [‖B‖T̂ · T̂ ]rdt

• ‖B‖ ∗ 2πr = µ0I

• ⇒ ‖ ~B‖ = µ0I
2πr

13.4 4.4: Path independence

When do we care only about the endpoints and not the path? Examples include the spring
and the electric charge, and counterexamples include motion under friction.

Note that integrals of the form
∫
C
df
dsds =

∫ s=l
s=0 f

′(s)ds = f(x(s = l)) − f(x(s = 0))
are path independent (fundamental theorem of calculus). So if you can find a legit
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antiderivative of our function, it is path independent. Or, if ~F is a gradient
vector field (~F = ∇f), then the line integral depends only on the endpoints of C.

Note: If f(s) = f(~x(s)), then
∫
C f
′(s) =

∫
C f
′(~x(s)) =

∫ s=l
s=0

δf
δx (x(s))x′x(s)+ δf

δy (x(s))x′y(s)+

δf
δz (x(s))x′z(s) or

∫ s=l
s=0 ∇f(x(s)) · x′(s)ds =

∫
C f
′(s) . This looks less like a magical theo-

rem and more of a description of a componentwise derivative, line-integrated over ds like
usual.

Example: if ~E = λ
2πε0

xî+yĵ
x2+y2

, find f such that ∇f = ~E.

• Note: This is just the anti- and derivative cycle technique.

• What’s on the î? That’s δf
δx = λ

2πε0
x

x2+y2

• What’s on the ĵ? That’s δf
δy = λ

2πε0
y

x2+y2

• Anti-derivative on the x: f = λ
4πε0

ln(x2 + y2) + h(y)

• Re-differentiate for y: δf
δy = λ

2πε0
y

x2+y2
+ h′(y)

• So h(y) is constant, and f = λ
4πε0

ln(x2 + y2) + C

Example: Another cycle: if ~F = (2x − 3y)̂i + (6y − ax)ĵ, what’s an a to allow for ∇f =
~F?

• Note: This is just the anti- and derivative cycle technique again

• What’s on the î? That’s δf
δx = 2x− 3y

• What’s on the ĵ? That’s δf
δy = 6y − ax

• Anti-derivative on the x: f = x2 − exy + h(y)

• Re-differentiate for y: δf
δy = −3x+ h′(y) = −3x+ 6y. a = −3.

Example: Spring: if ~F = −(‖~x‖ − l0) ~x
‖~x‖ , find f such that ∇f = ~F .

• Hint given: ∇(1
2‖~x‖

2) = ~x⇒ ∇(‖~x‖) = ~x
‖~x‖

• Rewrite as −~x+ l0
~x
‖~x‖

• KEEP the nablas!

• Use hints on each term: ~F = −∇(1
2‖~x‖

2) + l0∇(‖x‖)

• ~F = ∇(−1
2‖~x‖

2 + l0‖x‖)

29



• Note: Second term worked out through chain rule, or you can just do the hand-math
on
√
x2 + y2...

• The magic: Now we can use f to find the work from earlier problems: f(0, 0, 2)−
f(0, 1, 0) = −1

2 !

Curve orientation: pick two opposite parametrizations of the curve C+ and C− (say,
“going right” and “going left”). We can use right-hand rule, where, if curve in some xy
plane, right thumb points along k̂ and C+ curls with fingers.

We know that
∫
C+

~F · d~x = −
∫
C−

~F · d~x and therefore,
∫
C++C−

~F = 0

We can say If
∫
C
~F · d~x depends only on endpoints of C then ~F is a gradient field.

• Basic idea: Similar to the fundamental theorem g(x) = d
dx

∫ t=x
t=a g(t)dt, we can prove

~F (~u) = ∇[
∫ ~u
~a
~F · d~x].

• Plan: prove directional derivative of
∫
~F · d~x along ~v is ~v · ~F (~u) for any ~v, which

proves the answer is ~F (~u)

• Neat idea: We’re looking for
∫ ~u+h~v
~a

~F · d~x −
∫ ~u
~a
~F · d~x =

∫ ~u+h~v
~a

~F · d~x +
∫ ~a
~u
~F · d~x =∫ ~u+h~v

~u
~F · d~x!

• Because of path independence, we can parametrize this as
∫ t=h
t=0

~F (~u+ t~v) · ddt [~u+ t~v]dt

• = ~v ·
∫ t=h
t=0

~F (~u+ t~v)dt, which under lim 1
h and L’Hopital’s, becomes ~v · ~F (~u).

Also:∫
C
~F · d~x depends only on the endpoints of C if and only if

∫
L
~F · d~x = 0 for any closed loop L

• If F depends only on the endpoints, then any closed loop L is basically a C+ and a
C−, so the circuit integrates to 0.

• If every loop is 0, then any two curves with the same endpoints form a loop (after
reversing one), so paths are independent.

Note that the two theorems together imply ~F = ∇f ⇔
∫
L
~F · d~x = 0 for a connected domain D.

Such an F is called conservative.

13.5 3.5: Curl

Conservative fields, where any loop line-integrates to zero, get their name because no
work is performed over such a loop.
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Main idea: It’s hard to show every loop is zero. Instead, lets look at very small loops and
go from there. Proof idea:

• Pick a point ~p in a connected (no holes) domain D.

• Use the right-hand rule (for example) and build a small circular loop L in a plane
around D.

• Consider the linear approximation: The approximate field around p is the exact field
at p plus the derivative at p multiplied by the delta from p.

• So, this means ~F (~x(t)) ≈ ~F (~p) +D~F (~p)(~x(t)− ~p)

• Substitute into line integral:
∫
L[~F (~p) +D~F (~p)(~x(t)− ~p)]dx = 0

• The first term is zero because it’s a conservative field: ~F (~p) = ∇(~F (~p)~x)

• The integral of the second term relates to
δFy
δx −

δFx
δy :

– Goal: Calculate 1
πε2

∫
LD

~F (p)(~x− ~p) · d~x

– Consider a loop in the xy plane only (meaning n̂ = î). Then ~x(t) = 〈ε cos(t), ε sin(t), 0〉

– ~x′(t) = 〈−ε sin(t), ε cos(t), 0〉

– D~F (~p)(~x(t) − ~p) · d~x = δFx
δx (~p)(~xx − ~px)dxdt +

δFy
δx (~p)(~xx − ~px)dxdt + δFx

δy (~p)(~xy −
~py)

dy
dt +

δFy
δy (~p)(~xy − ~px)dydt

– (Note that the −px,−py terms will integrate to zero, and that Fz = 0).

– A-ha: Also note that same-variable terms disappear too:
∫
L
δFx
δx (~p)(~xx ∗ dxxdt ) =∫ t=2π

t=0 ε cos(t) ∗ −ε sin(t) = −ε2
∫ t=2π
t=0 sin(t) = 0

– So we’re left with
∫ t=2π
t=0

δFx
δy ε sin(t)(−ε(cos(t))) +

δFy
δx ε cos(t)ε(cos(t))

– Using
∫ t=2π
t=0 cos2(t) =

∫ t=2π
t=0

1
2 −

cos(2t)
2 = π (and given the curve shape, same

integral result for sin)...

– ε2(
δFy
δx (p)

∫ t=2π
t=0 cos2(t)dt− δFx

δy (p)
∫ t=2π
t=0 sin2(t)dt)

– = πε2[
δFy
δx (p)− δFx

δy (p)]

– Don’t Forget: What we proved is that the line integral around that point is
(a piece of) the curl times the area of the contained shape!

• Do this again for xz and yz planes ( n̂ = ĵ, n̂ = k̂), and we end up with 1
πε2

∫
LD

~F (p)(~x−
~p) = (many equivalent forms)

– {− δFy
δz + δFz

δy , n̂ = î;− δFz
δx + δFx

δz , n̂ = ĵ;− δFx
δy +

δFy
δx , n̂ = k̂}
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– det

 î ĵ k̂
δ
δx

δ
δy

δ
δz

Fx Fy Fz

 · n̂
– (∇× ~F ) · n̂

• So the curl is defined as (∇× ~F ) · n̂, sort of like the divergence is ∇ · ~F

• TODO What’s the deal with the n̂ part?

A potential is a function f that has a corresponding conservative vector field ~F = ∇f .
(Note: Wouldn’t any f fit the bill here?).

The big theorem for conservative fields ~F : ∇× ~F = ~0⇔
∫
L
~Fd~x = 0⇔ ~F = ∇f

Example: A disk rotating around z axis with rotational velocity ω. What’s the curl?

• ~r = some < x, y, z >.

• Velocity vector on disk ~v is perpendicular to disk position r (perp to both xy position
and z), and is [ωk̂]× ~r.

• This cross product ~v = ωxĵ − ωyî.

• So curl is det

 î ĵ k̂
δ
δx

δ
δy

δ
δz

ωy ωx 0

 = 2ωk̂

• Curl Intuition: So the curl “curls” around the axis of rotation, gets bigger with a
faster rotation, and would reverse if the direction reversed.

Example: A river flowing with field ~F = e−x
2
î What’s the curl?

• det

 î ĵ k̂
δ
δx

δ
δy

δ
δz

e−x
2

0 0

 = 0

• Intuition: If you put a cross-shaped boat in the water, axis aligned, it wouldn’t
twist.

Example: A river flowing with field ~F = e−x
2
ĵ What’s the curl?

• det

 î ĵ k̂
δ
δx

δ
δy

δ
δz

0 e−x
2

0

 = −2xe−x
2
k̂

• Intuition: If you put a cross-shaped boat in the water, axis aligned, it WOULD
twist, since the upward flows have different strengths on different sides of the boat.
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13.6 4.6: Stokes’s Theorem

Like the Divergence Theorem stacking cubes, Stokes’s Theorem can be built up from small
pieces too (rectangular loops). Proof:

• Note: “δ” means the boundary of a region.

• Same-oriented square loops R1, R2 can be merged to share two canceling edges (going
in opposite directions) and thus one bigger loop.

• Therefore,
∫
δ[R1+R2]

~F · d~x =
∫
δR1

~F · d~x+
∫
δR2

~F · d~x

• Before, in section 4.5, we proved that 1
Ai

∫
δri

~F · d~x = (∇ × ~F (pi)) ⇒
∫
δri

~F · d~x =

Ai(∇× ~F (pi))

• so
∫
δ[r1+r2...]

~F · d~x =
∑
Ai∇× ~F (pi)

• As we increase the granularity and shrink Ai to zero, this becomes Stokes’s The-

orem:
∫
δS
~F · d~x =

∫∫
S ∇× ~F · ~dA . So the line integral of the skirt is the same as

the curl integrated over the surface.

• So this means that closed surfaces sum to zero curl, and a conservative fields sums
to zero curl (∇× (∇F ) = ∇×~0 = ~0.

• TODO: What happened to n̂?

Example: The hemisphere z = R2−x2−y2 with equator intersecting the xy-plane at circle
C, with “arrows” oriented counterclockwise viewed from the top of k̂. If ~F = −1

3y
3î +

1
3x

3ĵ + zk̂, compute line integral intC ~F · d~x.

Line integral technique:

• x(t) = 〈R cos(t), R sin(t), 0〉, so ~F · d~x = 1
3R

4 sin4(t) + 1
3R

4 cos4(t)

• Given identity
∫ 2π
θ=0 cos4(θ) =

∫ 2π
θ=0 sin4(θ) = 3π

4

• Then integral quickly becomes 1
3R

4 ∗ (3π
4 ∗ 2) = R4π

2

Curl technique:

• det

 î ĵ k̂
δ
δx

δ
δy

δ
δz

−1
3y

3 1
3x

3 0

 = (x2 + y2)k̂

• f = z + x2 + y2 = R2 (level set). Gradient ∇f = 〈2x, 2y, 1〉 is normal by level set

and n̂ = 〈2x,2y,1〉√
4x2+4y2+1

, so k̂ · n̂ = 1√
4x2+4y2+1
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• dA = ‖~xx × ~xy‖ = ‖〈1, 0,−2x〉 · 〈0, 1,−2y〉‖ =
√

4x2 + 4y2 + 1

•
∫∫
S ∇× ~F · ~dA =

∫∫
S(x2 + y2)k̂ · n̂dA =

∫∫
S(x2 + y2)(k̂ · n̂)dA

• =
∫∫
S [x2 + y2] 1√

4x2+4y2+1

√
4x2 + 4y2 + 1

• Switch to polar, don’t forget Jacobian for dA: =
∫ R
r=0

∫ 2π
θ=0(r2 cos2(θ)+r2 sin2(θ))rdrdθ

• = 2π
∫ R
r=0 r

3 = 2πR4

4 = R4π
2

Another feature of Stokes: If finding the surface area of a figure S only depends on boundary

δS, you can switch to another figure S′ as long as the boundary doesn’t change!

Example: Same unit hemisphere, but raised by a unit cylinder, with ~F = 〈eyz, x cos(z3) +
xzeyz, cos(sin(xyz))〉

• The a-ha is that a unit disk will have the same boundary, so set z = 0

• This reduces to ~F = 1, x, 1, and easy to compute ∇× ~F = 1 ∗ k̂

• n̂ = k̂, so
∫∫
S n̂ · k̂ =

∫∫
S 1 = π by area of a circle!

Another implication: a closed surface (say sphere S) has
∫∫
S ∇ × ~F · ~dA = 0 by the

argument:

• Separate into two hemispheres S+, S− with skirts running in opposite directions.

• These have
∫∫
S+
∇× ~F · ~dA =

∫
C+

~F · d~x = −
∫
C−

~F · d~x =
∫∫
S−
∇× ~F · ~dA

•
∫
C+

and
∫
C−

therefore sum to zero.

• And by Stokes theorem, their surface integrals
∫∫
S+

and
∫∫
S−

do too.

Stokes’s Theorem also works in 2D. Consider any such region S a 2D xy-bound object
with normal k̂.

• Write the field as ~F = 〈P (x, y), Q(x, y), 0〉

•
∫
C
~F · d~x =

∫
C Pdx+Qdy by definition.

• Take the curl, which is ∇× ~F = δQ
δx −

∆p
δy

• By Stokes’s Theorem,
∫
C Pdx+Qdy =

∫∫
S [ δQδx −

∆p
δy ]dxdy

• Green’s theorem
∫∫
D[ δGxδx −

δGy
δy ]dxdy =

∫
C
~G · n̂ds is just a 2D divergence theo-

rem.
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– Why? Substitute P = −Gy, Q = Gx into above, see
∫
C Pdx + Qdy = ~G ·

〈dy,−dx〉. The last vector is normal to 〈dx, dy〉, and unit, so we’ve got it.

Gotcha Even though conservative flows have curl = ~0, ~0 flows CAN be non-conservative
on non-simple domains. Example:

• ~F = 〈 −y
x2+y2

, x
x2+y2

, 0〉.

• Domain D = R2 − (0, 0)

• Curl [ δδx( x
x2+y2

) + δ
δy ( x

x2+y2
)]k̂ = ~0 after calcuation.

• But
∫
C
~F ·d~x, when changed to polar with ~x = 〈cos(t), sin(t), 0〉, becomes

∫
C

sin2(t)
1 +

cos2(t)
12

=
∫
C 1 = 2π

• This closed loop is not 0, so the field is not conservative, but the curl still is ~0.

• The gotcha is that the domain is not simply connected like a sphere, but more like
a donut with a hole in the middle.

• If we can’t shrink our circle to a point, the loop doesn’t have to integrate to zero.
(TODO: Like in complex analysis?)

13.7 4.7: Swirls and Curls

To review:

• Divergence: How many lines enter or leave the neighborhood of the point, indicates
how much volume changes over the flow.

• Divergence theorem relates Flux through a closed bounding surface and the diver-
gence over the internal volume. Main idea: stuff inside cancels out, and what’s going
in or out of the skin ends up being the sum of the volume’s field inside.

• Divergence theorem relates any n−1 and n dimension hyperspaces:
∫∫
S
~F · n̂dA =

∫∫∫
R∇ · ~FdV

• Curl: How much is the flow swirling around the point (not entering or leaving).
Rotational torque ends up motivating this in this chapter.

• Curl relates a line integral and the 2D-surface (possibly in higher space) it skirts.

• Stokes’s Theorem:
∫
δS
~F · d~x =

∫∫
S ∇× ~F · ~dA

•

• NOTE: These cross over in the case where field is the curl of some other field:
~G = ∇× ~F :
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•
∫∫
S ∇× ~F · ~dA =

∫∫
S
~G · n̂dA =

∫∫∫
R∇ · (∇× ~F )dV = 0

• This is because the divergence of a curl is always zero. Can work out in a straight-
forward way. Not sure of intuition yet.

Example: Torque ~τ on a mass at position ~r under angular velocity around origin ~ω and
and force ~F = 〈Fx, Fy, 0〉.

• Torque formula: ~τ = ~r × ~F , where ~F is proportional to δ~ω
dt

• Rod connecting mass to origin is vector 〈l cos(θ0), l sin(θ0), 0〉

• Just compute the cross product: det

 î ĵ k̂
l cos(θ0) l sin(θ0) 0
Fx Fy 0

 = l[Fy cos(θ0)−Fx sin(θ0)]k̂

• This indicates the torque is perpendicular to R2 always, confining the rotation and
position there.

Example: Cross-shaped paddle wheel (~r0 with spokes ~r1...~r4) in a water flow ~V

• Torque on paddle ~τi = k[~ri − ~r0] × [~V (~ri) − ~V (~r0)⊥] = k[~ri − ~r0] × [~V (~ri) − ~V (~r0)]
since the parallel part zeroes out.

• Torque on paddle ~τ1 = k〈l cos(θ), l sin(θ), 0〉×〈[ δVxδx l cos(θ)+ δVx
δy l sin(θ)], [

δVy
δx l cos(θ)+

δVy
δy l sin(θ)], 0〉

• = kl2[
δVy
δx cos2(θ) + [

δVy
δy −

δVx
δx ] sin(θ) cos(θ)− δVx

δy sin2(θ)]k̂

• Recognizing that r2, r3, r4 are the same as r1 except with θ augmented by pi
2 , π,

3π
2 ,

we eventually can sub and get ~τ = ~τ1 + ~τ2 + ~τ3 + ~τ4 = 2kl2[
δVy
δx −

δVx
δy ]k̂

• So, ~τ is proportional to [
δVy
δx −

δVx
δy ]k̂

• Fact, we define curl in 2D as curl(~V (x, y) = [
δVy
δx −

δVx
δy ]k̂

• This can just as easily be in the yz-plane as curl(~V (y, z) = [ δVzδy −
δVy
δz ]̂i

• Note: we also define a right-handed system as one where vectors ~v1 × ~v2 = ~v3, so
the j one ends up being negative since î× k̂ = −ĵ

An irrotational field is one where the cross-shaped paddles don’t spin, or where curl =
~0.
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13.8 4.8: Differential Forms

General Form of Stokes’ Theorem is
∫
M dω =

∫
δM ω . This chapter explains it.

A 1-form takes a vector, outputs a number and is linear. So ω : Rn → R, ω[a~x+ b~y] = aω[~x] + bω[~y].

• 1-form: ~v · ~x, since ~v · (a~x+ b~y) = a~v · ~x+ b~v · ~y

• Not a 1-form: ‖x‖2, since
√

((ax1)2 + (by1))2) + (ax2)2 + (by2))2) + ...
2

= a2(x2
1 +

x2
2) + b2(y2

1 + y2
2) + 2ax1by1 + 2ax2by2 6= a2(x2

1 + x2
2) + b2(y2

1 + y2
2) =

√
ax2

1 + ax2
2

2
+√

by2
1 + by2

2

2
. Extra crossover term.

• Remember projv(~x) = ~x·~v
~v·~v~v

• So 1-form: projv(x) · ~u, because it’s just ~x· a bunch of stuff.

• However, GOTCHA, not a 1-form: projv(x), since it outputs a vector, not a number!

• Obviously projx(~v) = ~v·~x
~x·~x~x is not, as both numerator and denominator are quadratic.

• An index into a vector is a one form: [0, 1, 0] · [x, yz] = y

• A mean is a one form: [ 1
n ,

1
n ,

1
n ] · [x, y, z]

• Note: A zero-form is a function on ~x, since it just returns a scalar at that point.

Define dxj [êi] = 1 if i = j else 0. Note: This is really a function dxj(~x) = [0, 0, 0, ...1, ...0]·~x,
where the 1 is in the j spot. These are the basis 1-forms because
any 1-form can be written as ω = a1dx1 + ...+ andxn. . So ω[~x] = ~v·~x is just

∑n
j=1(vjdxj)[~x].

NOTE: This 1-form dx2, say, looks an awful lot like dy, since ~v =< x, y, z >=< 0, y, 0 >→
dy[~v] = 1

A tensor is a linear function to a number taking not just one but multiple vectors as
inputs.
The tensor product is built from linear combinations of (dxi ⊗ dxj)(~v, ~w) = dxi(~v) ·
dxj(~w) = viwj , so T (~v, ~w) = (

∑
i,j tijdxi ⊗ dxj)(~v, ~w) =

∑
i.j tijviwj . Just combos of each

pair. Examples and non-examples of 2-tensors:

• Tensor: ~x · ~y. Linear, outputs a number.

• Non-Tensor: ~x+ ~y. Linear, but outputs a vector.

• Non-Tensor: ~x× ~y. Linear, but outputs a vector.

• Non-Tensor: ‖~x‖+ ‖~y‖. Non-linear

As for 3-tensors:
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• det(~u,~v, ~w) defined as det

u1 v1 w1

u1 v2 w2

u1 v3 w3

 is linear in changes to u, v, w.

• (~u× ~v) · ~w actually IS det

w1 w2 w3

u1 u2 u3

v1 v2 v3


• (~u× ~v)× ~w outputs a vector.

• (~u · ~v)~w outputs a vector.

• A 3-tensor is generally T (~u,~v, ~w) = (
∑

i,j,k tijkdxi⊗dxj⊗dxk)(~i, ~v, ~w) =
∑

i.j,k tijmuivjwk,
so think of it as (dxi ⊗ dxj ⊗ dxk)(~u,~v, ~w) = uivjwk

Side note: Wedge product ~a ∧ ~b = 1
2 [~a ⊗ ~b − ~b ⊗ ~a] is a square matrix measure of the

anti-commutativity of ~a ⊗~b. So, (~a ∧~b)ij = uivj − ujvi. (Note: Some texts seem to omit
the 1

2 .) It has algebraically verifiable properties of:

• Antisymmetry: (~a ∧~b) = −(~b ∧ ~a).

– This makes the tensor called alternating.

– This also means (~a ∧ ~a) = −(~a ∧ ~a) = [0]

– This also means (with basic associativity) that switching any two flips the sign:
~a ∧~b ∧ ~c = −~b ∧ ~a ∧ ~a

• Bilinearity: (c~a ∧~b) = c(~a ∧~b)

• Distributivity: ~a ∧ (~b+ ~c) = ~a ∧~b+ ~a ∧ ~c

• And others.

A 2-form is an alternating 2-tensor: a linear operation taking in 2 vectors and producing
a number, where switching the vectors flips the sign.

A 3-form is an alternating 3-tensor: a linear operation taking in 3 vectors and producing
a number, where flipping two vectors flips the sign, so “permutation rules” signage. So
switch

A three dimensional wedge product continues this and again has all combinations :

dxi ∧ dxj ∧ dxk = 1
6 [

dxi ⊗ dxj ⊗ dxk − dxi ⊗ dxk ⊗ dxj
+ dxj ⊗ dxk ⊗ dxi − dxj ⊗ dxi ⊗ dxk
+ dxk ⊗ dxi ⊗ dxj − dxk ⊗ dxj ⊗ dxi]
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Form fields eat position ~x and return a form (tensor taking in vectors and returning a
number).

• Main rule: df =
∑n

j=1
δf
δxj
dxj .

• Implies somehow (?): d(
∑n

j=1 fj(~x)dxj) =
∑n

j=1[dfj ] ∧ dxj .

• And suspending disbelief this means d(
∑n

i,j=1 fij(~x)dxi ∧ dxj) =
∑n

i,j=1[dfij ] ∧ dxi ∧
dxj .

• Example: If ω = xdy − ydx = −ydx+ xdy

– Set f1 = −y, f2 = x

– dω = df1 ∧ dx+ df2 ∧ dy by second rule

– = ( δf1δx dx+ δf1
δy dy) ∧ dx+ ( δf2δx dx+ δf2

δy dy) ∧ dy by main rule

– −dy ∧ dx+ dx ∧ dy = 2dx ∧ dy by calcuation

Another example: ω = 1
2(x2 + y2 + z2)[dx ∧ dy + dx ∧ dz + dy ∧ dz] sees dω as:

• = [xdx+ ydyzdz][dx ∧ dy + dx ∧ dz + dy ∧ dz] by third rule

• = x(dx ∧ dy ∧ dz) + y(dy ∧ dx ∧ dz) + z(dz ∧ dx ∧ dy) since anything like dx ∧ dx
zeroes out

• = (x− y + z)dx ∧ dy ∧ dz

Manifolds are part of differential geometry, or really, just space curves (1-manifold),
surfaces (2-manifolds), regions (3-manifolds). The number tells us how many numbers are
needed to specify a point within it.

Rule: We can only integrate an n-form on an n-manifold. So, this means we can integrate
a single (linear) vector-eating function on a line, a tensor eating two vectors on a surface,
a 3-form on a region.

Be careful - it’s not just the variable count: ω = xdx−ydz → dω = (dx)∧dx− (dy)∧dz =
−dy ∧ dz. So it is a 2-manifold, and we can only integrate dω on a surface.

Example: If we want to integrate f(x, y, z) = x2 + 2y2 + 3z on ~x(t) = 〈1 − t, t, 2 + 3t〉t ∈
[0, 1]:

• dx = dx
dt dt, dx = dy

dt dt, dz = dz
dt dt

•
∫
M df =

∫
M [2xdx+ 4ydy + 6zdz]

• =
∫ 1
t=0[2x(t)dxdt + 4y(t)dydt + 6z(t)dzdt ]

• =
∫ 1
t=0[2(1− t)(−1) + 4(t)(1) + 6(2 + 3t)(3)]dt = 64
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Example: M = x2 + y2 + z2 ≤ 1, ω = xdy ∧ dz− ydx∧ dz+ zdx∧ dy. What’s
∫
δM ω

• Parameterize

• dx = δ
δu(sin(u) cos(v)) + δ

δv (sin(u) cos(v)) = cos(u) cos(v)du− sin(u) sin(v)dv

• dy = δ
δu(sin(u) sin(v)) + δ

δv (sin(u) sin(v)) = cos(u) sin(v)du+ sin(u) cos(v)dv

• dz = δ
δu(cos(u)) = − sin(u)du

• dx∧dy = (cos(u) cos(v) sin(u) cos(v)+sin(u) sin(v) cos(u) sin(v))du∧dv = cos(u) sin(u)du∧
dv

• dx ∧ dz = − sin(u) sin(v) sin(u)du ∧ dv = − sin2(u) sin(v)du ∧ dv

• dy ∧ dz = − sin(u) sin(v) sin(u)du ∧ dv = sin2(u) cos(v)du ∧ dv (wrong should be
negative)?

• ω = xdy ∧ dz − ydx ∧ dz + zdx ∧ dy.

• = sin(u) cos(v) sin2(u) cos(v)du∧dv−sin(u) sin(v)[− sin2(u) sin(v)du∧dv]+cos(u) cos(u) sin(u)du∧
dv

• = [sin3(u) + cos2(u) sin(u)]du ∧ dv

• = sin(u)du ∧ dv

• So
∫ 2π
v=0

∫ u=π
u=0 sin(u)dudv = 4π

Example: Do it again by computing the other way
∫
M δω:

• ω = xdy ∧ dz − ydx ∧ dz + zdx ∧ dy.

• δω = 3dx ∧ dy ∧ dz

•
∫∫
M 3dxdydz = 3× 4π

3 = 4π.

• BIG: This is one example of
∫
δM ω =

∫
M dω

Note: The great unification happens when dumping different forms into
∫
δM =

∫
M δω

• If we use ω = Fxdy∧dz+Fydz∧dx+Fzdx∧dy, then we find that dω = ∇·Fdx∧dy∧dz.

• Then
∫
dω =

∫∫∫
M ∇ · Fdxdydz. (Why drop the wedges, exactly?)

• If we parametrize δM as ~x(u, v), with dx = δx
δudu + δx

δudv, similar for the other two,
and compute all the dy ∧ dz etc....

• And we churn through noticing cross products inside, we get ω = ~F (~x(u, v)) · (~uu ×
~xv)du ∧ dv

• So
∫
δM ω =

∫∫
D
~F (~x(u, v)) · (~uu × ~xv)du ∧ dv
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• = ~F (~x(u, v)) · ~uu×~xv
‖(~uu×~xv)‖‖(~xu × ~xv)‖du ∧ dv

• =
∫∫
δM

~F · ~dA

• So we’ve equated
∫∫∫

M ∇·Fdxdydz =
∫∫
δM

~F · ~dA after dropping the wedges somehow.

• Divergence Theorem!

Similarly, if we use ω = Fxdx+fydy+Fzdz, we can do something similar to get
∫
δM

~F ·d~x =∫∫
M ∇× ~F · ~dA, or Stokes’ Theorem.

NOTE: Still need some intuiition for these forms. Apparently these are described as “that
which makes Stokes’s and Divergence Theorem fall out”: https://math.stackexchange.com/questions/2858098/what-
is-a-differential-form

Note: From lecture at “https://www.youtube.com/watch?v=wlo2V8H5khM”, di1,i2,...ik is
a function that takes k vectors in Rn, concatenates horizontally, selects only rows i1, i2, ...ik
and takes the determinant. This is a multilinear, alternating function.

14 Chapter 5: Applications

14.1 5.1: The Laplacian

Laplacian: ∇2 ~F = ∇ ·∇~F = δ2

δx2
Fx + δ2

δy2
Fy + δ2

δz2
Fz shows up often in partial differential

equations.

Example: Finding Potential V of an electrostatic field ~E = −∇V , if ~E = Q
4πε0

~x
‖~x‖3

• Consider this in spherical coordinates and note that V is only a function of ρ.

• Use the gradient in spherical coordinates: ∇· ~V = δV
δρ ρ̂+ 1

ρ
δV
δφ φ̂+ 1

ρ sin(φ)
δVθ
δθ θ̂, ignoring

the second and third terms of the sum.

• ~E = Q
4πε0

~x
‖~x‖3 = Q

4πε0
1
ρ2
ρ̂ = −∇V = δV

δρ ρ̂

• Q
4πε0

1
ρ2

= − δV
δρ

• Q
4πε0

1
p + C = V (ρ) or Q

4πε0
1
‖~x‖ = V (~x) is potential for point charge at origin.

• This means a set of charges at points Pi have total potential
∑

i
Q

4πε0
1

‖~x− ~Pi‖|
, creating

the field ~E = −∇V

• So if ∇ · ~E = ρ
ε0

(Gauss’s law), and ~E −∇V , then:

• ∇ · ~E = −∇ · (∇V ) = − δ
δx

δV
δx −

δ
δy
δV
δy −

δ
δz
δV
δz = = −δ2

xV − δ2
yV − δ2

z = −∇2V
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• Laplacian shorthand : ∇2 = ∇ · ∇ = δ2

δx2
+ δ2

δy2
+ δ2

δz2

Example: Two infinite thin sheets of metal aligned with xy-plane. Function T (z) is tem-
perature, T (0) = T0, T (h) = 2T0. What is T?

• From Laplace, ∇2T = ( δ2

δx2
+ δ2

δy2
+ δ2

δz2
)T = δ2T

δz2
since only z matters here.

• Anti-derive T ′′(z) = 0 twice to get T (z) = Az +B.

• T (0) = T0 ⇒ B = T0 ⇒ T (z) = Az + T0

• T (h) = 2T0 ⇒ Ah = T0 ⇒ A = T0
h ⇒ T (z) = T0

h z + T0

Exmple: Thin circlular disk of radius r floats on a cushion of air, over centered opening
of radius ε. Pressure at opening is pin, at edge (and outside) is necessarily patm. If also
follows ∇2p(r) = 0

• To get ”nabla squared” (or cylindrical Laplacian equation) we want to get ”nabla of
a vector” (div) on ”nabla of a function” (grad).

• (1) Cylindrical grad equation: ∇f = δf
δr r̂ + 1

r
δf
δθ θ̂ + δf

δz ẑ

• (2) Cylindrical div equation: ∇ · ~F = 1
r
δrFr
δr r̂ + 1

r
δFθ
δθ θ̂ + δFz

δz ẑ

• Subbing (1) in to (2) yields ∇ · (∇~F ) = 1
r

δ(r δf
δr

)

δr r̂ + 1
r
δ
δθ (1

r
δf
δθ )θ̂ + δ2Ff

δz2
ẑ = 0

• We know we don’t depend on θ or z, so this is just 0 = 1
r

δ(r δf
δr

)

δr

• We know r is not 0, so multiply by r: 0 = δ
δr (r δfδr )⇒ A = r δfδr ⇒

A
r = δf

δr

• Anti-derivatives yield A ln(r) +B = f(r), and specifically
A ln(R) +B = patm
Aln(ε) +B = pin

• Subtract to get A ln(Rε ) = patm − pin = ∆p⇒ A = ∆p

ln(R
ε

)

• Sub our new A in to get B = pin − ln(ε) ∆p

ln(R
ε

)

• Subbing all gives us p(r) = ∆p
ln( r

ε
)

ln( ε
R

) + pin

Challenge: If lift L =
∫∫
disk[p − patm]dA = W weight causes the disk to float, what

∆p = pin − patm satisfies it?

• We know form r ∈ [ε, R], p(r) = ∆p
ln( r

ε
)

ln( ε
R

) + pin

• And r ∈ [0, ε] means it is pin.
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• Split the integral apart.

• L =
∫ 2π
θ=0

∫ r=R
r=0 p− patmdA, or L = 2π

∫ r=R
r=0 p(r)rdr − π ∗R2patm (term 1)

• 2π
∫ r=R
r=0 p(r)rdr = 2π(

∫ r=R
r=ε p(r)rdr) + 2π(

∫ r=ε
r=0 pinrdr). Second term is π ∗ ε2pin

• 2π(
∫ r=R
r=ε ∆p

ln( r
ε
)

ln( ε
R

)) = 2π∆p
ln( ε

R
)

∫ r=R
r=ε ln( rε )rdr = 2π∆p

ln( ε
R

)

∫ r=R
r=ε ln(r)rdr − 2π∆p ln(ε)

ln( ε
R

) ∗ R2−ε2
2

• Last term above is term 3.

• Term 4 is −R2−ε2
4 + R2 ln(R)−ε2 ln(ε)

2

• L = ∆P
ln(R

ε
)
π
2 (R2 − ε2) = W

• ⇒ ∆p =
2W ln(R

ε
)

π(R2−ε2)

Example: Capacitor for storing energy - Two concentric conducting shells, R1 < R2 voltage
V (R1) = 0, V (R2) = V0. No charge between the spheres so ∇2V = 0.

• Use spherical coordinates. Everything obviously depends on ρ.

• (1) Spherical grad equation: ∇f = δf
δρ ρ̂+ 1

ρ
δf
δφ φ̂+ 1

ρ sin(φ))
δf
δθ θ̂

• (2) Spherical div equation: ∇ · ~F = 1
ρ2
δ(ρ2Fρ)
δρ + 1

ρ sin(φ)
δ
δφ(sin(φ)Fφ) + 1

ρ sin(φ)
δFθ
δθ

• Subbing (1) in to (2) yields ∇2V = 1
ρ2

δ
δρ [ρ2 δV

δρ ] + 1
ρ2 sin(θ)

δ
δφ(sin(φ) δVδφ ) + 1

ρ2 sin2(φ)
δ2V
δθ2

• Solving for the potential V (ρ), R1 ≤ ρ ≤ R2 is the same as above:

• 1
ρ2

δ
δρ [ρ2 δV

δρ ] = 0. Multiply by ρ2

• A = ρ2 δV
δρ → Aρ−2 = δV

δρ ⇒ B −Aρ−1 = V (ρ)

• Churning through you get B = A
R1
, A = V0R1R2

R2−R1
, and V (ρ) = R2V0

R2−R1
[1− R1

ρ ]

• And therefore the field ~E = −∇V (grad of potential) and Spherical grad equation
(1) above mean that ~E = δV

δρ ρ̂ = −R1r2V0
R2−R1

ρ̂
ρ2

• Note that this looks like the field from a point charge (proportional to ~x
‖~x‖3 ) for the

same

• Given that spherical charge distribution vs. placed all at center is the same field
(from previous chapters), this applies as well since they’re spherical shells.
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14.2 8.2:Gaussian Integrals I

Summary: A set of tricks for evaluating I(a) =
∫∞
−∞ x

ne−
a
2
x2dx, specifically when n = 0 :

(
√

2π
a ), even (recursive built on n = 0) or or odd (zero).

Gaussian for n=0:

• I(a) is defined as a function of a with dummy variable x( or whatever): I(a) =∫∞
−∞ e

−a
2
x2dx

• Trick to getting this integral is integrating it in both directions over the xy plane and
taking the square root.

• Specifically, I(a)2 = (
∫∞
−∞ e

−a
2
x2dx)(

∫∞
−∞ e

−a
2
y2dy) = (

∫∞
−∞

∫∞
−∞ e

−a
2

(x2+y2)dxdy

• Rewrite in polar and solve: I(a)2 =
∫ 2π
θ=0

∫∞
r=0 e

a
2
r2rdrdθ = [2π ∗ −1

a e
−a

2
r2 ]∞0 = 2π

a

• Thus I(a) =
√

2π
a

Gaussian for n=odd:
∫∞
−∞ x

ne−
a
2
x2dx, a > 0: The ef(x) factor is symmetric, xn is odd,

so the whole thing is zero.

Gaussian for n=2:

• Use a derivative trick to reproduce our tricky integral from known identity I(a) =√
2π
a instead of trying to evaluate

∫∞
−∞ x

2e−
a
2
x2dx)

• δ
δaI(a) = δ

δa

√
2πa−

1
2 = −1

2

√
2πa−

3
2

• δ
δaI(a) =

∫∞
−∞

δ
δa [e−

a
2
x2 ]dx = −1

2

∫∞
−∞ x

2[e−
a
2
x2 ]dx

• Equating the ends of the last two lines shows that
∫∞
−∞ x

2[e−
a
2
x2 ]dx =

√
2πa−

3
2

• From here, we can attack n = 4, then from there, n = 6, etc.

If we’re going to evaluate the general form
∫∞
−∞[e−

a
2
x2−bx+c]dx:

• First, complete the square of f = −a
2x

2 − bx+ c

−2

a
f = x2 +

2b

a
x− 2c

a
(96)

−2

a
f = (x+

b

a
)2 − b2

a2
− 2c

a
(97)

f = −a
2

(x+
b

a
)2 +

b2

2a
+ c (98)

(99)
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Therefore,
∫∞
−∞[e−

a
2
x2−bx+c]dx =

∫∞
−∞[e−

a
2

(x+ b
a

)2+ b2

2a
+c]dx = [e

b2

2a
+c]
∫∞
−∞[e−

a
2

(x+ b
a

)2 ]dx. No-

tice that u = x+ b
a , du = dx makes the integral

√
2π
a .

So general form of Gaussian, with n = 0, is
∫∞
−∞[e−

a
2
x2−bx+c]dx =

√
2π
a [e

b2

2a
+c] .

14.3 8.2:Gaussian Integrals I—

Summary: Multivariable Gaussian integrals are quadratic combos of x, y, z, etc. and∫
R2 e

− 1
2

[~x·(A~x)] =
√

(2π)n

det(A) . To evaluate them, you can split them out Fubini-style and

multiply, you can get to a diagonal matrix, or you can rotate to a diagonal and back,
which has the same determinant.

Steps:

• If A = aIn×n, then
∫
R2 e

− 1
2

[~x·(A~x)] = (
√

2π
a )n,

– since
∫
e−

1
2

[ax2+ay2...]dxdy =
∫
e−

1
2

[ax2]dx
∫
e−

1
2

[ay2]dy

• If A is a diagonal matrix with entries λ1λ2..., then
∫
R2 e

− 1
2

[~x·(A~x)] =
√

(2π)n

λ1×λ2...

– This is the same Fubini setup as above. Separate the integrals and multiply
results.

• If A is a symmetric matrix,
∫
R2 e

− 1
2

[~x·(A~x)] =
√

(2π)n

det(A)

– We can take any symmetric matrix and change coordinates to get a diagonal
matrix (TODO: I forget why).

– Then A = RDRT , and since R is a rotation matrix det(R) = det(RT ) = 1

Example: Evaluate 1
2π

∫∫
R2 exp[−1

2 [2x2 − 2xy + 5y2]]dxdy

• A matrix A =

(
a b
b d

)
, and writing ~x = 〈x, y〉, together presented as ~x · (A~x), means

that a = 2, b = −1, d = 5 by just expanding the multiplication explicitly.

• since det(A) = 9, then

√
(2π)2

9 = 2π 1
3

Example: Evaluate 1
2π

∫∫
R2 exp[−1

2 [2x2 + y2 − 8x− 2y + 9]]dxdy

• Rewrite the exponent as [−1
2 [2(x− 2)2 + (y − 1)2]

• Separate out into two integrals
∫
f(x)dx

∫
g(y)dy
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• The dx integral is of the form
∫

exp[−a
2u

2], with u = x− 2. So that’s

√
(2π)

2

• The dy integral is of the form
∫

exp[−a
2v

2], with v = y − 1. So that’s

√
(2π)

1

• Multiplying together, you get 2π√
2

Example: Evaluate 1
2π

∫∫
R2 exp[−1

2 [−2x2 + 2xy − 2y2 − 6x + 6y − 6]]dxdy. This is mixed
so trickier,.

• Rewrite in the format exp[−1
2~x · (A~x) +~b · ~x+ c.

• Here, A =

(
2 −1
−1 2d

)
,~b = 〈−3, 3〉, c = −3

• Linear algebra says we can transform to a diagonal matrix : eigenvectors rotate to
the eigenspace, then expand via the diagonal, then rotate back)

• Once you get these R and RT matrices, you can find the change of coordinates
u = 1√

2
(x+ y), v = frac1

√
2(−x+ y)

• ⇒ x = 1√
2
[u+ v], y = 1√

2
[u− v]

• NOTE: They then mention the Jacobian J where | det

( δx
δu

δx
δv

δy
δu

δy
δv

)
| = 1

• This leaves us with 1
2π

∫∫
R2 exp[−1

2 [u2 + 3v2] + 3
√

2v − 3]dudv

• Rewrite exponent to −1
2u

2 − 3
2(v −

√
2)2 to get 2π√

1
√

3
× 2π = 1√

3

•

14.4 8.4: Fourier Transforms

Summary: By employing the Dirac Delta function δ(~x) ≈
∫
Rn e

2πi~x·~kd~k , we can transform

functions into a separate eigenspace where derivatives and integrals may be easier.

Note from the internet: The Fourier transform maps like a 3 sin(x) waveform to a function
which has a peak at (frequency) 3. This makes sense that the Dirac ends up being a bunch
of ”point spikes”. More to figure out.

• Motivation: While linear transform A = RDRT transforms ei to eigenvectors wi:
Rei → wi, where A is diagonal, so that Awi = λiwi

• Similarly, operators like ∇ change functions into vector-valued functions. So an
”eigenfunction” of ∇ would have ∇f~k(~x) ∝ kf~k(~x)
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• The function e2πi~k·~x fits that bill.

• So in the same way that the eigenvector basis wi means any ~v =
∑
ajŵj ,

any function f(~x) =
∫
Rn f̂(~k)e2πi~k·~xd~k for some function f̂~k called the Fourier Transform of f .

• This looks like a pretty crappy integral to evaluate, so we’ll learn some tricks here.

Things to remember about δ(x)

• δ(x) = 0 except at x = 0. Another way to think about this is δ(x− a) = 0 except at
x = a.

• This also means f(x)δ(x − a) = f(a)δ(x − a) since f(x) only comes into play when
x = a. Note: This is useful for getting rid of x in some integrals

•
∫
R δ(x− a) = 1 for any a.

• Can we approximate δ using normal functions?

– This basically looks like a Gaussian ∝ e
−x2
2 with an extremely sharp center.

– Normalizing: If we set A = 1√
2πε

, then
∫
RAe

−x2
2 dx = 1.

– If we take the limit as ε → 0, then δ(x) ≈ 1√
2πε
e−

x2

2ε ≈
∫
R e
−2π2εk2e2πikxdk if ε

is small.

– Subbing ε = 0, which is not technically allowed, makes this look like
∫
R e

2πikxdk

– This generalizes as δ(~x− ~a) =
∫
Rn e

2πi~k·[~x−~a]d~k

• So above we’ve basically posited the transformation f(~x) =
∫
Rn f̂(~k)e2πi~x·~kd~k from

Fourier space to regular space.

• This means that f̂(~k) =
∫
Rn f(~x)e−2πi~k·~xd~x works the other way. How to rip out f̂(~k)

from the integral?

– We know
∫
δ(k′ − k)dk′ = 1, so f̂(k) = f̂(k)

∫
δ(k′ − k)dk′

– =
∫
f̂(k)δ(k′ − k)dk′ by moving a k-based function inside the k’-based integral.

– =
∫
f̂(k′)δ(k′ − k)dk′ by the delta function rule.

– =
∫
f̂(k′)[

∫
e2πix[k′−k]]dk′ by Gaussian-based definition of δ.

– = e2πix[−k]
∫
f̂(k′)e2πixk′dk′ by pulling out the k terms from the k′ integral.

– = f(x)e−2πixk by definition of f(x) from above.
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• So transform to Fourier space is f̂(~k) =
∫
Rn f(~x)e−2πi~k·~xd~k

• Playing around in Fourier space:

– d̂f
dx(k), meaning the transform of derivative f ′(x), is 2πikf̂(k) after integrating∫
R f
′(x)e−2πix·kdx by parts, with dv = f ′(x), u = e−2πix·k.

– Since all the components are independent, the two-variable case [2πi]2kikj f̂(~k) =
ˆδ2f

δxiδxj
follows.

Example of solving diff eqs with Fourier Transform:

• Applying this, the differential equation d2f
dx +ω2f = 0 admits the solution ([2πik]2 +

ω2]f̂(~k) = 0

• If we assume f̂(~k) 6= 0 everywhere, then it has values only at k = ± ω
2π

• This suggests the general form aδ(k − ω
2π ) + bδ(k + ω

2π )

• Let’s evaluate one of the fourier terms: g(x) = a
∫
δ(k − ω

2π )e2πkxdk

• Consider f(x) = e2πkx, a = ω
2π and use the delta shift rule.

• So the integral ends up being f(x) = f(a) = ae2πi( ω
2π

)·x ∫ δ(k − ω
2π )dk = aeiωx

• The ”b” term evaluates to be−iωx

• Writing f(x) = aeiωx + be−iωx using only real quantities: sub in eiωx = cos(ωx) +
i sin(ωx).

• This yields the general solution [a+b] cos(ωx)+i[a−b] sin(ωx). Define A = a+b, B =
a− b for general solution f(x) = A cos(ωx) +B sin(ωx)

14.5 5.5: Diffusion Equation

Laplacian: 0 = ∇2T = δ2T
deltax2

+ δ2T
deltay2

+ δ2T
deltaz2

looks similar but not the same.

Derivation of Diffusion Equatin.

• Diffusion: δu
deltat = D∇2u

• Definitions:

– D > 0 is a diffusion constant, different per material

– u(~x, t) is unit density function - probability of seeing particle in some point in
space. Integrates over R3 to 1
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– ρ(~x, t) = Nu(~x, t) is overall density function - N number of particles times the
unit density function.

– ~J is the current density. Magnitude is particles cross a unit area per unit
time. Direction points in average particle motion.

– Therefore
∫∫
S
~J · ~dA is the rate at which particles enter and exit the whole

surface S. Just like the flux.

– Therefore −
∫∫
S
~J · ~dA =

∫∫∫
V
δρ
δt (~x, t)d~x, since the flux is the particles leaving,

and ρ is the particle (remaining) density.

– But by the divergence theorem, −
∫∫
S
~J · ~dA =

∫∫∫
V ∇ · ~J(~x, t)d~x

– Equating these triple integrals, δρ
δt = ∇ · ~J(~x, t)⇒ δρ

δt +∇ ~J = 0

– Also, Fick’s Law: ~J = −D∇ρ , since the rate at which we’re leaving an area is

the negative of the gradient (which points towards the quantity increasing).

– Therefore, δρ
δt = D∇2ρ⇒ δu

δt = D∇2u since ρ = Nu.

Now we have to get to some Fourier magic to solve this equation.

– Start from δu
δt on the one side.

– δu
δt = D∇2u

– u =
∫∫∫

R3 û(~k, t)e2πi~x~kd~k (Fourier OUT)

– δu
δt = D( δ2

δx2
+ δ2

δy2
+ δ2

δz2
)
∫∫∫

R3 û(~k, t)e2πi~x~kd~k

– =
∫∫∫

R3 [2πi]2(~k · ~k)û(~k, t)e2πi~x~kd~k =
∫∫∫

R3 [−4π2‖~k‖]2û(~k, t)e2πi~x~kd~k

– But form the other side and the definition of Fourier OUT: δuδt =
∫∫∫

δu
δt e

2πi~x~kd~k

– Therefore, by equating the contents of the integrals, we find the derivative on
the Fourier side: δû

δt = D · −4π2‖k‖2û

– Therefore, we can use the standard f ′ = kf , and the knowledge that t = 0→ û =

û(~k, 0) to find the solved diff eq on the Fourier side û(~k, t) = û(~k, 0)e−4π2‖k‖2t

if we assume D = 1

Then it looks like we have what appears to be a standard dance:

– Put this û into the Fourier OUT equation.

– Assume a FOURIER IN of some y so that û(~k, 0) =
∫∫∫

u(~y, 0)e−2πi~y·~kd~y
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– Rewrite so to shift ~y into the d~k part

– Complete the square in the exponent and evaluate.

– Leading us to u(~x, t) = ( 1
4πDt)

3
2

∫∫∫
u(~y, 0)e−

1
4Dt
‖x−y‖2d~y as the almost full so-

lution. Just need the initial constant.

– Note that u(~y, 0) is:

∗ The initial probability distribution. The particle is at ~a, so it’s ”infinitely
likely” there, and 0 elsewhere.

∗ Therefore u(~y, 0) = δx− a. So we only need to evaluate at ~y = ~a.

∗ So, since δy − a confers ALL the distribution when y = a, then ( 1
4πDt)

3
2

∫
R3 δ(y−

a)e−
1

4Dt
‖x−y‖2d~y = ( 1

4πDt)
3
2 e−

1
4Dt
‖x−a‖2f

∗ This trick looks useful! Taking the fourier transform of a delta with a
function (taking care to keep the d~x or d~k out of it, looks like it yields the
function!

∗

–

Example: How far does the average particle travel, if u(x, t) = ( 1
4πDt)

3
2

∫∫∫
R3 e

− 1
4DT
‖x−a‖2

• We’re looking to estimate average distance, or
√∫∫∫

R3 ‖x− a‖2u(~x, t)d~x

• Consider ~a = 0 (move to origin)

• Let’s apply square root at the end.

• Switch to polar coordinates with (see above) d~x = ρ2 sin(φ)dρdφdθ

• THen we’re looking at constant factors ( 1
4πDt)

3
2 , 2 from integrating sin(φ) from

[−π, π], and 2π from integrating θ.

• The integral becomes
∫
ρ4e−

1
4πDt

ρ2dρ

• Set u = ρ

2
√
Dt
, du = dρ

2
√
Dt

• Integral becomes (2
√
Dt)4(2

√
Dt)

∫
u4e−u

2
du = (2

√
Dt)4(2

√
Dt)3

√
π

8 ∗(
1

4πDt)
3
2 ∗2∗2π

• = 6Dt. So result is the square root.

• Therefore, if D = 6, say, a particle will travel 1200 cm in on average
√

6 ∗ 6 ∗ t =
1200⇒ t = 400 seconds.
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14.6 5.6: The Wave Equation

Summary: TODO

Derivation of Wave Equation:

• Fundamental idea: line of particles spaced l length apart, labeled by initial position
x+ kl, with displacements from these positions u(x− l, t), u(x, t), u(x+ l, t).

• So, u(x+ l, t) < u(x, t), for example, if the right-hand ball is a little left of start, and
the left-hand ball a little right of start.

• Force law: F = k|l′ − l|.

• Therefore, length of spring between right and middle: u(x + l, t) + l − u(x, t), with
rightward force k|u(x+ l, t) + l − u(x, t)− l| = k|u(x+ l, t)− u(x, t)|

• Therefore, length of spring between middle and left: u(x, t) + l − u(x − l, t), with
leftward force −k|u(x+ l, t) + l − u(x, t)− l| = −k|u(x, t)− u(x− l, t)|

• Add these together to get k|u(x+ l, t) +u(x− l, t)−2u(x, t)|. Note that this is messy
but all cases apply symmetrically.

• To estimate this, use Taylor approximation

– Expand around center x: T (x) = f(x0) + f ′(x0)(x− x0) + f ′′(x− x0)2 + ...

– T (x+ l) = u(x+ l, t) ≈ u(x, t) + u′(x, t)l + 1
2u
′′(x, t)l2 + ...,

– u(x− l, t) ≈ u(x, t) + u′(x, t)(−l) + 1
2u
′′(x, t)(−l)2 + ...

– ⇒ u(x+ l, t) + u(x− l, t)− 2u(x, t) ≈ u′′(x, t)l2

– So total force is then kl2 δ
2u
δx2

– With F = ma, this means F = m δ2u
δt2

= kl2 δ
2u
δx2
⇒ δ2u

δt2
= kl2

m
δ2u
δx2

– With “wave speed” v, for some reason v2 = kl2

m , for general wave equation

form δ2u
δt2

= v2∇2u

– Note: For rest of chapter, we set v = 1 (for simplicity) and add damping term

for energy loss, so δ2u
δt2

+ 2γ δuδt = v2∇2u

Note: The sides of the drum are fixed on a drumhead of [0, lx]× [0, ly], so u(x, 0, t) =
u(0, y, t) = u(x, ly, t) = u(lx, y, t) = 0
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How can û(k, t) guarantee periodicity in u(x, t)? If û(k, t) = û(k, t)e2πikl , then

u(x+ l, t) =

∫
û(k, t)e2πik(x+l)kdk (100)

=

∫
(û(k, t)e2πikl)e2πikxdk (101)

=

∫
û(k, t)e2πikx = u(x, t) (102)

• TODO
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