
Spotting Graph Theory Problems in Spot It

Dave Fetterman1 and James Wang2

1Obviously Unemployed
2Surprisingly Employed

4/16/23

Abstract

The kids’ card game Spot It supports a unique mechanic: every card of the 55-card
deck has eight different symbols, and shares exactly one symbol of some kind with
every other card. Intuitively, this seems impossible. The obvious game play (“spot
the match”) works for children as young as two; the intricacies of deck construction
astound these children of forty-two. In constructing our own deck, we run across in-
teresting problems in graph theory, number theory, and abstract algebra1. Some are
solved, some unsolved, but they span a wide range of domains not obviously connected.

A deck of n Spot It cards, each featuring s symbols from a catalogue of
m total symbol choices can be constructed many ways, but only a few ways
if every symbol occurs exactly g times. In that case, the choice of the (s, g)
pair both dictates m and n and is strongly restricted.

However, if g is then of the special form g = pk + 1, p ∈ P, k ∈ N, we can construct
a deck with uniform g, and beyond that, we can prove the following four constructions
are surprisingly equivalent2:

1. (The Children’s Game) A deck of n Spot It Cards with s = g symbol slots, where
each of m = n symbols occurs exactly g times,

2. (Graph Theory) An edge partition of the complete graph Kn into complete sub-
graphs Kg,

3. (Abstract Algebra) A finite (Galois) field of order g − 1, and
4. (Number Theory) A Perfect Difference Set[1] on n elements.
We then examine other configurations of s and g, as well as comment on other

reasonable constructions of a Spot It deck.

1There are also representations in projective geometry, but let’s save some domains for everyone else.
2Or, at least, one can derive any from another

1

1 The Game and the Problem Statement

Introduced to us by Ari Steinberg, Spot It is a children’s game of 55 cards as shown in
Figure 1a, featuring eight colorful symbols on each. Though gameplay comes with a few
variants in its tiny rulebook, the primary mechanic when presented two cards is spot the
single common symbol first. The game is simple enough for a two- or three-year old to grasp
(and win!), but the question emerges: just how did they construct such a deck? 3

Naturally, there are trivial constructions: every symbol occurs only twice, or the count of
symbols is so varied that a deck can be constructed almost greedily. However, the Spot It
game has uniformly 8 symbol “slots” on each card, which each appear 8 times4 across the
different cards.

This is what we examine in this paper:

The Core Question: For what choices of g and s can we construct a Spot It deck
where each card has space for s symbols, and each symbol appears exactly g times
throughout the deck?

1.1 Reframing as a graph problem

Noticing that every card has a relationship to every other card (notably, the identity of the
single symbol shared between them) as in Fig. 1b, we take our first step by reconstructing
this problem as an undirected graph as in Fig. 1c. We can always represent a Spot It deck
as a graph.

The Graph Representation: A deck of Spot It Cards each with s symbol slots,
where each symbol appears g times, can be represented by a graph G:

1. With n nodes, where n = s(g − 1) + 1,

2. With m unique edge colors, where m denotes the number of unique symbols, and

3. Where all edges of any single color form a complete subgraph on g nodes, so
m =

(
n
2

)
/
(
g
2

)
.

Note: Singletons (groups where g = 1) would be rendered as self-edges. These are uninter-
esting and are generally ignored in this paper

Proof :

3Note: There have been some other investigations into Spot It[2], but for the purposes of enjoyment,
everything in this paper was researched without reference to Spot It work.

4As we will see later, there should be 57 cards for this to be true; it’s likely two cards were removed.

2

(a) Four cards in
the game

(b) Four cards in
the game with links

0 1

2 3

(c) Four cards
graph, with cards
as nodes and an
edge color for each
shared symbol

1. As in Fig. 2, node n0’s adjacencies are exactly s monocolor cliques of size g − 1
(excluding n0 itself). In a complete graph, these adjacencies comprise the total node
set, so n = (g − 1)s + 1. Using any other node is equivalent.

2. As in Fig. 1b, while card 1 and card 2 have the relationship “clock”, node 1 and node

3

0

1

2

3 4

5

6 12

11

109

8

7

Figure 2: n = s(g − 1) + 1. Here, s = 4, g = 4

2 share an edge with the color red. This is the same relationship between nodes 2
and 3, and nodes 1 and 3. “Drop”, “knight”, and “ghost” would be colors purple,
green, and blue, respectively. This works because every edge has exactly one color
in this formulation (corresponding 1:1 with a symbol), and every card pair shares
exactly one symbol.

3. All cards with a given symbol (say, “clock”) must link via a single color (here, red) to
all other nodes whose card has that symbol; this is a complete subgraph. A complete
graph Kn has

(
n
2

)
edges. A monocolor clique of size g is a complete graph as well,

with
(
g
2

)
edges. Kn’s edges are exactly these equal-sized cliques, so there are therefore

m =
(n2)
(g2)

of them, corresponding to “colors”.

And since every edge in our complete graph Kn is in exactly one monocolor clique of size
Kg, this becomes a crisp graph theory problem:

The Core Question in Graph Terms: Given s and g as before, can we construct
an edge partition (colloquially here, “coloring”) of a complete graph on n nodes Kn

into a set of complete subgraphs of size g (denoted Kg)?

Note: Our idiosyncratic term “coloring”, which really just serves to better visualize par-
titioning a graph into disjoint edge sets, should not be confused with the traditional term
“edge coloring”, where no edges of the same color can meet at a node. Also, we some-
times sloppily use “clique”, “group”, and “complete subgraph” interchangeably to mean
“the entire set of nodes connected by one color of edge”.

Though exhaustive research wasn’t done, this graph problem does not appear
to have a clear analytical solution out there.5

5Or people who care about publishing it within the reach of lazy hobbyists, anyway!

4

Since m and n are determined from s and g, we’ll start by looking at possible candidate
configurations of s and g.

2 The Candidate Theorem: g|s(s− 1), g ≤ s

Suppose that that every card has s symbols, and any symbol has exactly g cards containing
it6. Then

1. g|s(s− 1).

2. If s > 1 and g > 1 then g ≤ s.

3. If s > 1 and g > 1, then m = (sg)n and therefore m ≥ n.

4. All nontrivial candidate configurations of g, s are then g ≤ s, g|s(s− 1).

Proof :

1. (
g

2

)∣∣∣∣(n2
)
⇒ n(n− 1)

g(g − 1)
∈ N⇒ g(g − 1)|n(n− 1) (1)

n = (g − 1)s + 1⇒ g(g − 1)
∣∣(sg − s + 1)(sg − s) = (sg − s + 1)s(g − 1) (2)

⇒ g|s2g − s2 + s⇒ g|(1− s)s⇒ g|s(s− 1) (3)

2. Any node ni is adjacent to s monocolor cliques of size g. These cliques C1...Cs (con-
taining non-ni nodes if g > 1) comprise all nodes, and any other cliques can contain
no more than one of each Ci. This means that clique of size g greater than s cannot
be formed, since the only place to find nodes are these C1...Cs. The other trivial
case, s = 1, means there is only one color in the whole graph.

This means we need not consider configurations like g = 6, s = 3 even though 6|3(3−
1).

6for example, all cards contain s = 4 symbols in Fig. 4, which each appear on g = 3 cards

5

3. Another corollary here is that m ≥ n , since:

n = (sg − s + 1) (4)

m =

(
(sg−s+1)(sg−s)

2

)(
g
2

) =
(sg − s + 1)(sg − s)

g(g − 1)
=

(sg − s + 1)s

g
(5)

⇒ m = (
s

g
)n (6)

s ≥ g ⇒ m ≥ n (7)

4. This is just a combination of (1) and (2). But for example, a tiling of triangles (g = 3)
means that either s ≡ 0 mod 3 (see Fig. 3) or s ≡ 1 mod 3 (see Fig. 4).

01

2

3

4

5

6

Figure 3: s=3, g=3, n=7, m=7. Cliques of form (ni, ni+1, ni+3), ∀i

3 Constructing g = s− 1 over a field

Though we presented a few legitimate examples of complete graphs tiled by uniformly
sized complete subgraphs in Fig. 3 and Fig. 4, these are not easy to find by hand once s
becomes much larger. The whole problem of graph partitioning admits many algorithms,
most approximations[3], though usually referring to separating actual nodes into parti-
tions, rather than edges, and usually over an arbitrary graph instead of a relatively simple
complete graph.

We can, however, systematically construct an edge partition if g is a prime power.

g=s-1 construction: If g is a prime power pk, we can explicitly construct a graph
that satisfies our game with g = s− 1.

6

0

1

2
3

4

5

6
7

8

Figure 4: s=4, g=3, n=9, m=12.
Cliques: (ni, ni+3, ni+6), (ni, ni+1, ni+2), (ni, ni+4, ni+8)∀i, (ni, ni+5, ni+7), i ≡ 0 mod 5

As the combination of s, g determine the shape of the graph entirely, g = s−1 implies:

• The graph has n = s(g − 1) + 1 = (g + 1)(g − 1) + 1 = g2 nodes.

• Those nodes can be grouped into g groups of size g.

• There are m = (sg)n = (sg)g2 = sg = (g + 1)g colors in the graph.

3.1 General Construction Algorithm

Algorithm Summary : Our algorithm takes every constant c in a finite field F , and goes
through the multiplication table of F row (y) by row. To a clique Cc,y specified by these
two, we add an element from Gx for every column x : The entry from Gx indexed by the
entry at z = (x, y) in the table, plus the constant c.

Construction Algorithm for g = s− 1:

To construct the m = g(g − 1) colors (symbol cliques) in the graph:

• Construct a finite field F = GF(g), which is of size g.

7

• Divide the g2 nodes into g cliques (G0, G1, ...Gg−1), where indices [0...g− 1] ∈ F ,
of g nodes each ((G0,0, G0,1...G0,g−1)...(Gg−1,0, Gg−1,1...Gg−1,g−1))

• For all c ∈ [0, g − 1]:

– For all y ∈ [0, g − 1]:

∗ Create clique Cc,y, initially the empty set. y is the row (specifying the
multiplier) and c is a constant (added to each result).

∗ For all x ∈ [0, g−1], set z = Gx ·Gy + c, where + and · refer to addition
and multiplication rules for F , and add Gx,z to clique Cc,y.

• The cliques (G0, G1, ...Gg−1), plus the g2 cliques like Cc,y form the (g+1)g cliques
or “colors”.

3.2 Constructing with prime g

We can start with the easiest way to see this: g = p, p ∈ P.

Let’s construct the operation tables for the finite field on p = 3, as in Fig. 5, and build an
algorithm for constructing the graph from them.

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 1 0

(a) Addition table GF(3)

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

(b) Multiplication table
GF(3)

Figure 5: Field tables for GF(3)

Refer to Fig. 6.

1. Cliques G0, G1, G2: these are the triangles in black.

2. Cliques C0,0, C1,0, C2,0: these are the triangles in blue. These walk through the 0 row
in the multiplication table in Fig. 5b.

3. Cliques C0,1, C1,1, C2,1: these are the triangles in brown. These walk through the 1
row in the multiplication table in Fig. 5b.

4. Cliques C0,1, C1,1, C2,1: these are the triangles in red. These walk through the 2 row
in the multiplication table in Fig. 5b.

8

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2

Figure 6: whole K9: s = 4, g = 3, n = 9,m = 12

Every node is connected to every other node once in Fig. 6, since for nodes x, y and
z, w:

• If x = z, they’re in the same “black” clique Gx.

• If y = w, they’re in a “blue” clique Cc,0, where our multiplier y is zero. Every member
of C2,0, for example, is the 2 element of their Gi: G0,2, G1,2, G2,2.

• Else there is some multiplier a where starting from node (x, y), going z − x mut-
lipicative “hops” away lands us at node w. These are like the brown (a = 1) or red
(a = 2 ≡ −1 mod 3) cliques.

Compare identical graphs Fig. 6 (generated from the algorithm) and Fig. 4. The mapping
between node (i, j) in Fig. 6 and node k in Fig. 4 is (i, j)→ k = i+3j, with inverse k → (k
mod 3, bk/3c). In Fig. 4:

• The black cliques are {G0, G3, G6}, {G1, G4, G7}, {G2, G5, G8}, grouped by i mod n.

• The blue cliques are {G0, G1, G2}, {G3, G4, G5}, {G6, G7, G8}, a walk through the top
row of Fig.5b.

• The brown cliques are {G0, G4, G8}, {G6, G1, G5}, {G3, G7, G8}, a walk through the
second row of Fig.5b.

• The red cliques are {G0, G7, G5}, {G3, G1, G8}, {G6, G4, G2}, a walk through the third

9

row of Fig.5b.

3.3 Constructing for g as prime power

For prime numbers, it’s clear that every increment in [1, p−1] traverses a path a, 2a, 3a...(p−
1)a where the nth member is unique among all other increment paths.

The leap of insight comes in realizing that, in general, these cliques are not additive incre-
ments, but journeys through a field’s multiplication table; for g prime, these look additive,
but for more complicated finite fields, we need to defer to the table.

We can do this for prime-power fields like GF (22 = 4):

+ 0 1 B D

0 0 1 B D
1 1 0 D B
B B D 0 1
D D B 1 0

(a) Addition table GF(4)

· 0 1 B D

0 0 0 0 0
1 0 1 B D
B 0 B D 1
D 0 D 1 B

(b) Multiplication table
GF(4)

Unlike a prime-order finite field, the addition table is not cyclic, so in a sense, our indices for
G0,i say are not i ∈ [0, 3] but i ∈ {0, 1, B,D}! This is why the phrase “where [0...g−1] ∈ F”
is important in the algorithm.

c y G0 G1 GB GD

0 0 0 0 0 0
0 1 0 1 B D
0 B 0 B D 1
0 D 0 D 1 B

(a) Cliques C0,i

c y G0 G1 GB GD

1 0 1 1 1 1
1 1 1 0 D B
1 B 1 D B 0
1 D 0 B 0 D

(b) Cliques C1,i

c y G0 G1 GB GD

B 0 B D 0 1
B 1 B 0 1 D
B B B 1 D 0
B D B B B B

(c) Cliques CB,i

c y G0 G1 GB GD

D 0 D D D D
D 1 D B 1 0
D B D 1 0 B
D D D 0 B 1

(d) Cliques CD,i

Figure 8: s=5, g=4 adjacency tables

Here are the resulting tables for s = 5, g = 4. For example, in Fig. 8a, consider the third

10

row as saying “clique C0,B contains nodes G0,0, G1,B, GB,D, GD,1”.

(Of course, once the multiplication is defined, feel free to substitute 2 for B and 3 for D,
in, say, a program.) y

Including the “black” cliques like GB = {G0,B, G1,B, G2,B, G3,B}, we see that there are no
repeated edges, and all edges are accounted for.

In general, to prove that this table exactly represents the “color” of every edge, we need
to show that for every pair of elements, say, (B, 1), and every pair of columns, say 0 and
B, (see the blue row in Fig. 8c) that B and 1 appear in the same row in columns 0 and B
exactly once.

Proof : To ensure there are no duplicates, consider two columns x1 and x2 that have
a repeated value pair in some table, once on the table row beginning (c, gy), once on
(c∗, g∗y):

• Assume gygx1 + c = g∗ygx1 + c∗, and gygx2 + c = g∗ygx2 + c∗ for gx1 6= gx2

• Subtract the two to get gy(gx1 − gx2) = g∗y(gx1 − gx2)

• The field F requires the nonzero (gx1 − gx2) ∈ F to have an inverse.

• Multiplying both sides by that inverse, we have gy = g∗y , showing they cannot be
distinct. Thus, we have no duplicates.

Similar field-based arguments can be made to ensure that every pair is represented. Since
everything we’re dealing with is finite, however, we can also use a pigeonhole approach:

• For any pair of columns, there are g2 pairs of values to account for.

• Across the tables above, there are g2 rows (combinations of c and y that generate
the cliques).

• From the previous arugment, no two rows can be duplicated.

• Therefore, by the pigeonhole principle, every combination is represented, and there-
fore, between any two Gj cliques, every node has an edge with every other.

4 Constructing g = s from g = s− 1

With the previous construction (g = s− 1) in hand, we can easily construct a g = s graph
(adding one to g, keeping s the same), with the same restrictions on g. See Fig. 9 for a
visual on this.

• Create node ny for y ∈ F

• Add ny to all cliques Cc,y. For a given y, these cliques share no nodes.

11

• Create node n∗. Add this to every Gi clique.

• Create clique of all ny, y ∈ [0, g] plus n∗.

We see then that:

• Every new node ny gets added to the new “n” clique plus s− 1 cliques, all of size s.

• n∗ is added to s− 1 cliques plus the bottom clique.

• Every G-style clique gets n∗ added to it.

• Every Cc,y clique adds node ny.

• So, the new partition is one where g = s, built on the previous where g = s− 1.

Note that you can create s = g = 8 this way, with n = m = 57. The Spot It card deck
comes with 55 cards with s = 8 “slots”, so our suspicion is that two cards were simply
dropped from the set,.

0,0 0,1

0,B 0,D

1,0 1,1

1,B 1,D

B,0 B,1

B,B B,D

D,0 D,1

D,B D,D

n0 n1 nB nD n∗

Figure 9: s=5, g=5 created from s=5, g=4, no edges shown. The blue is the CB,1 clique
newly adding in n1. The yellow is the C0,1 clique newly adding in n0. Node 0, B is in both.

5 Another Approach: Constructing g = s with perfect dif-
ference sets

Though it will be shown equivalent to the last construction, we can use another concept to
build these graphs when g = s: perfect difference sets. Notably, these are proven to exist
for g = pk − 1 by Singer[1].

Searching for complete graph partitions by brute force is difficult. Even a graph of size 7
like Fig. 3 requires sorting through putting 21 distinct objects into 7 distinct bins7, and

7(21!)/((3!)7) ≈ 1.8× 1014, though with some symmetries

12

the numbers get worse from there.

There is some hope that a partition or coloring, should it exist, would exhibit some reg-
ularity; after all, every node has a similar configuration of edges and adjacent nodes in a
complete graph.

Additionally, when g = s, we’ve seen that n = m, so seeking a unique complete subgraph
Kg mapped 1:1 to each node which, in total, partition the complete graph, seems like a
good strategy.

Looking at Fig. 3, we see that every node at index i can be mapped to a K3 (color)
whose vertices are i, i + 1, and i + 3, with addition being modulo 7. (Take a look at node
0’s black triangle (0, 1, 3)). This means that we’ve created “chords” of offset 1, 2, and 3
(counterclockwise from i) in the graph. If we can make sure node i participates in exactly
one chord of each offset in [1, n−1], then we’ve ensured our partition represents every edge
involving node 0 once.

Node i still needs to find adjacencies with nodes i+ 2, i+ 4, i+ 5, and i+ 6 (or remapped
over modulo 7, i + 2, i − 3, i − 2, and i − 1). However, we can find these latter four by
simply repeating this triangle (j, j + 1, j + 3) over the rest of the graph; in particular, the
triangles at (i− 1, i, i + 2) (here, blue if i = 0) and (i− 3, i− 2, i) (yellow) take care of i’s
six required adjacencies. Then, we repeat this recipe for all nodes.

So, if for a given n, we can find a set ai ∈ [1, n − 1] of size g − 1 such that
⋃

i 6=j(ai − aj
mod n) = [1, n− 1], then this can be repeated for every node to cover the graph.

That such a set exists is not obvious. However, through some basic search algorithms
at https://github.com/fettermania/mathnotes/tree/main/spotit/code, we can sniff
out a few of them:

g,s n 0 adjacencies

3 7 {1, 3}
4 13 {1, 3, 9}
5 21 {1,4,14,16}
6 31 {1, 3, 8, 12, 18}
8 57 {1, 3, 13, 32, 36, 43, 52}
9 73 {1, 3, 7, 15, 31, 36, 54, 63}
10 91 {1, 3, 9, 27, 49, 56, 61, 77, 81}
12 133 {1, 3, 12, 20, 34, 38, 81, 88, 94, 104, 109}

Figure 10: Perfect Difference Sets up to g = s = 12

Fig. 11 is an example of 0’s adjacencies for s = g = 6:

It turns out that in the 1930s, James Singer found that these configurations, termed perfect

13

0

1

2

3

4

5
6

789
10

11

12

13

14

15

16

17

18

19

20
21

22 23 24
25

26

27

28

29

30

Figure 11: perfect difference set on g=6, s=6, n=m=31

difference sets, exist for g = pk, p ∈ P, k ∈ N, making n = g2 + g + 1[1]. This result was
not connected to graph edge partitioning in his paper. Though the existence for some
of the other types of g have been disproven, this appears to be the main theorem in the
area.

Singer’s Theorem on Perfect Difference Sets: If g = s, then n = g2−g+1 by the
Graph Representation Theorem and n = m by the Candidate Theorem. Thus, we’re
looking for a PDS over n = g2 − g + 1. This has been proven to exist if g = pk, p ∈
P, k ∈ N.

Singer’s proof relies also on finding a finite field F of size g. There are some deterministic,
non-search-based methods of doing this[4], though they seem quite intricate.

This limitation to prime powers, just like the partitions for g = s found in section 3,
explains the row omissions in the brute force search table in Fig. 10. So, if g = pk + 1, a
perfect difference set construction for an edge partition exists, and a field-based (section
3) construction also exists.

14

6 Interlude: Graph Equivalence up to relabeling

C1,0

C2,0

C3,0

C4,0

C1,1

C2,1

C3,1

C4,1

C1,2

C2,2

C3,2

C4,2

C1,3

C2,3

C3,3

C4,3

C1,4

C2,4

C3,4

C4,4

n0 n1 n2 n3 n4

Figure 12: s=5, g=5 from s=5, g=4 with no edges. The blue nj is an arbitrary clique, and
Cj,∗ are the g − 1 cliques (colors) adjacent to each node.

g=s equivalence Theorem: On a complete graph where g = s, any edge partition
is equivalent up to relabeling.

Proof : If g = s, and therefore m = n = g2 − g + 1, consider any clique.

A node like n0 in this clique (call it the“blue” clique at the bottom of Fig. 12) is adjacent
to g − 1 unique other colors or cliques, represented as the cliques Ci,0.

No color can be shared between these color adjacency sets (like C4,0 and C3,3 here). Con-
sider if n0 and n3 were both adjacent to yellow, they would have both a yellow and blue
edge between them.

Therefore, this blue clique shares a node with all of the other g(g−1) color cliques. Because
blue was an arbitrary selection, every color is adjacent to every other color on some single
node.
Imagine, for a moment, a new graph G′ where colors in our original graph G are nodes
with and edges exist between nodes representing colors sharing a node in G. We have just
shown that every color is adjacent, and so G′ is a complete graph.

Every complete graph of the same size is clearly equivalent up to relabeling, so there is
only one way to partition a complete graph into complete subgraphs when g = s.

15

An important consequence: Because g = s in both the cycle generation in section 3 as
well as the PDS generation in section 5, these are, up to relabeling, the same coloring.

7 Constructing a g = s−1 partition from a g = s partition

Suppose we have constructed g = s by Perfect Difference Sets or (as we have shown,
ultimately identically) by the method shown in Fig. 9. Consider removing the n∗∪

(⋃
i ni

)
clique and all associated edges. This changes our partition into one in which:

1. We have one fewer clique.

2. Each remaining clique has one member removed (we removed some ni from each
ni-including clique, and node n∗ was removed from each G clique.)

3. We lose g nodes.

4. s remains the same.

This matches the configuration of g = s−1. Though every graph constructed through this
method seems like it would be isomorphic (in particular, to graphs constructed using the
method in section 4), we can’t categorically rule out other constructions.

8 Considering wider g|s and g|s− 1: Inception

It seems we have reached the limit of possibilities when g = s. In such a graph, when
g − 1 = pk:

• We can create a game of Spot It with s symbols, each of which appear g times (section
1)

• We can always construct g = s− 1 through a finite field GF(} −∞) (section 3), and
augment with another clique to form g = s (section 4).

• We can always find a perfect difference set modulo n = g2 + g + 1 and construct a
graph partition where g = s (section 5).

• These partitions, and any where g = s, are isomorphic (section 6).

• We can always reduce to a partition where g = s − 1 by removing a clique and
associated edges. (section 7)

However, these only cover the equality cases of g = s− 1 and g = s. Section 2 showed that
we possibly could accommodate g|s and g|s− 1 more generally.

Despite repeated attempts, there don’t seem to be many surefire constructions (or reduc-
tions) from the above methods for slices like g∗ = g

k , k > 1. Proving that such constructions

16

are impossible also seems difficult.

However, “inception”8 is one very minor method of generating such a partition.

Inception: If Kn can be partitioned into complete subgraphs Kg and Kg can be
partitioned into complete subgraphs Kh, then Kn can be partitioned into complete
subgraphs of size Kh.

Of course, by the equivalencies above, this means we can make Spot It Games of highly
varied g and s, even if well outside practical possibility.

For example: We can partition K81 (s = 10, g = 9, n = 81,m = 90) into groups of K9, and,
like in figure Fig. 4, we can split those into (s∗ = 4, g∗ = 3, n = 9,m = 12). This gives us a
new partition of configuration (s = 40, g = 3, n = 81,m = 1080), in which every node still
has a uniform number of attached colors, and every color has the same number of node
members. This graph visualization has not been attempted.

Say s = g instead, just for another example. This certainly works for turning s = 9, g =
9, n = 73,m = 73 into s = 36, g = 3, n = 73,m = 876 as well, or even any other
configuration where g /∈ {s, s− 1} as in section 9.

(Note that an even more trivial example would be turning every edge into a K2 complete
graph.)

9 Considering wider g|s: Kirkman’s schoolgirl problem

Apparently some versions of this problem were studied even in the nineteenth century.
Kirkman’s schoolgirl problem[5] asks: Can fifteen girls walk in groups of three to school
for seven days, such that each pair walks together exactly once?. With colors representing
walking groups, s = 7, g = 3, n = 15,m = 35, we have something isomorphic to a Spot It
deck construction.

Through ad-hoc tinkering, we can find the graph in Fig. 13, showing the adjacencies for a
single node. These are repeated “round the horn”, with the exception that the red triangle
only appears five times instead of 15.

These are apparently instances of a Steiner Triple System S(t, k, n)[6], where we look for
groups of k among n total elements, which cover exactly once every set of size t. If t = 2
(edges in the graph, pairs of girls), and k = 3 (subgroups K3, walking trios) among n, we
have an instance of a Kirkman problem9 (and Spot It game).

8This is really just recursively solving our same partition problem on each complete subgraph Kg.
“Inception” is a nod to a movie sort of about recursion but also about running and guns.

9In fact, those systems those where t = 2, k = 3 are named Kirkman triple systems.

17

0

1

2

3
4

5

6

7

8

9

10

11
12

13

14

Figure 13: s=7, g=3, n=15, m=35, node 0 adjacencies. i ∈ [0, 4) : (i, i + 5, i + 10); ∀i :
(i, i + 1, i + 4), (i, i + 2, i + 8), all mod 15

The followups to this problem are varied (including links to projective and affine geometry)
and many unsolved (t ≥ 6). Much progress has been made on STS(t = 2, k = 3, n) but
results seem spotty for k > 3.

By some backtracking and brute force searching using our code https://github.com/

fettermania/mathnotes/tree/main/spotit/code, we can find a few ad-hoc solutions on
our own in Fig. 15, even without the problem fully solved.

The adjacencies for node 0 in s = 10, g = 5 are shown in Fig. 14, obtained through
computational means.

10 Nonuniform g: deletion and partial inception

All of our solutions were concerned with a Spot It deck in which every symbol appears
exactly g times. The commercial deck has s = 8 on all cards, but contains n = 55 cards

18

0

1

2

3

4

5

6

7
8

91011
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29

30 31 32
33

34

35

36

37

38

39

40

Figure 14: Perfect Difference Set on s=10, g=5, n=41, m=82: (0 1 4 11 29), (0 2 8 17 22)

instead of s(g − 1) + 1 = 8(7) = 57 cards, assuming g = 8. The most likely explanation is
that two cards were simply deleted.
Deletion from a deck created with the methods above yields a deck in which s remains con-
stant but g can vary. This could also occur if we replaced some of the complete subgraphs

19

s g adjacencies ∀i adjacencies i ∈ [0, g − 1]

6 3 {{0 1, 4}, {0, 2, 7}} {}
7 3 {{0 1 3}, {0, 4, 10}} {{0, 5, 10}}
9 3 {{0,1,6}, {0,2,10}, {0,3,7} {}
10 3 {{0,2,10}, {0,1,5}, {0,3,9}} {{0, 7, 14}}
10 5 {{0, 1, 4, 11, 29}, {0, 2, 8, 17, 22}} {}

Figure 15: Ad Hoc Steiner Solutions

Kg with “incepted” graphs (section 8). It’s also likely that we could greedily construct a
deck with consistent s if we were unconcerned if g were uniform across colors.

11 Open questions

In addition to the many open questions in Steiner Systems[6], which would include the
whether any g|s or g|s−1 has a solution, we have other questions about our systems:

• Can it be true that g|s(s− 1) but not true that g|s or g|s− 1 (e.g. g = 6, s = 9)?

• Are all constructions where g = s− 1 isomorphic?

References

[1] Singer, James. “A THEOREM IN FINITE PROTECTIVE GEOMETRY
AND SOME APPLICATIONS TO NUMBER THEORY”, 1934. https:

//www.ams.org/journals/tran/1938-043-03/S0002-9947-1938-1501951-4/

S0002-9947-1938-1501951-4.pdf

[2] “The Mind-Bending Math Behind Spot It!, the Beloved Family Card Game”,
Smithsonian Magazine. https://www.smithsonianmag.com/science-nature/

math-card-game-spot-it-180970873/

[3] Wikipedia: https://en.wikipedia.org/wiki/Graph partition

[4] Adleman, Leonard M. and Lenstra, Hendrik W. “FINDING IRREDUCIBLE POLY-
NOMIALS OVER FINITE FIELDS” https://www.math.leidenuniv.nl/~hwl/

PUBLICATIONS/1986a/art.pdf

[5] Wikipedia: https://en.m.wikipedia.org/wiki/Kirkman\%27s_schoolgirl_

problem

[6] Wikipedia: https://en.wikipedia.org/wiki/Steiner_system

[7] Pardon the improper formatting of all of the above, including the paper.

20

