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Abstract

Wherein I attempt original proofs of non-original seminal graph theorems without
reference to any other theorems or external input, for my own enjoyment.

Graph theory can sometimes admit systematic approaches, enabled by work like the Spec-
tral Theorem, but by and large, each graph theory proof seems to be its own unique puzzle.
This makes them great for the average swagman to attempt proofs of their theorems, many
only discovered in the mid-20th century.

Though I solicited Claude Anthropic for interesting theorems to prove, this work is entirely
my own, proven without reference to any other theorems. The lemmas may exist elsewhere
or be entirely unnamed elsewhere. Thus, each proof may be inelegant, incomplete, or just
plain wrong. At long last, I have run out of counterarguments for them.

Listed below are the statements of the six proofs, along with where I had the key insight.
They are arranged in order of increasing difficulty (for me).

Menger’s Theorem. Let G = (V, E) be a finite undirected graph and A and B two
disjoint subsets of vertices in V. Then the minimum number of vertices that need to be
removed to disconnect A from B is equal to the maximum number of vertex-disjoint paths
from A to B. Moment of insight: Child’s swimming lesson.

Konig’s Theorem In a bipartite graph, the size of the maximum matching equals the size
of the minimum vertex cover (a set of vertices that together touch every edge). Moment
of insight: Alone in the office.

Brooks’s Theorem If a graph G is not a clique and not an odd cycle and has maximum
degree d, it can be properly vertex-colored with d colors. Moment of insight: Bus.

Dirac’s Theorem An n-vertex graph in which each vertex has degree at least 5 must
have a Hamiltonian cycle. Moment of insight: Bus.

Lovasz’s Theorem: The complement of any perfect graph is perfect. Moment of insight:
Child’s swimming lesson.



Turan’s Theorem: If a graph G = (V, E) on n vertices satisfies |E| > 1 n? (1 — %), then
G contains a (k 4 1)-clique. Moment of insight: Child’s holiday concert.
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1 Menger’s Theorem Original Proof

Theorem 1.1 (Menger’s Theorem). Let G = (V, E) be a finite undirected graph and A and
B two disjoint subsets of vertices in V. Then the minimum number of vertices that need
to be removed to disconnect A from B is equal to the maximum number of vertex-disjoint
paths from A to B.

Proof. On a graph G, define n(G) as the number of vertex-disjoint paths between A and
B, and the minimum cut as m(G).

m > n: If we have N = n(G) vertex-disjoint paths and we remove M < n(G) of these
vertices, A and B must still be connected through at least one path since no paths can
share a vertex.

n > m: For any graph G = (V, E), we prove by induction on induced subgraphs of size k
(remove all but k vertices).

Base Case: k = 0,1 are meaningless, with no paths available. So remove all but 2 vertices
from G. If they are connected, m(G) = n(G) = 1. If not, m(G) = n(G) = 0. The condition
holds.

Inductive Case: Say for any induced subgraph G* = (V*, E*) of G, where |V*| =
kE—1,n(G*) > m(G*).



If adding a vertex v (and its edges incident to V*) back into G* does not increase the
number of vertex-disjoint paths, then our condition holds, since removing v (adding it to
the cut set) doesn’t change n(G) or m(G).

If doing so does increase the number of vertex-disjoint paths, then it can do so only by
one: Cutting v yields G*, where the condition holds, and adding v may increase the cut
set by one, but can only add one more vertex-disjoint path to G* (informally, you can’t
use v more than once). O

Therefore m(G) = n(G).

2 Konig’s Theorem Original Proof

Theorem 2.1 (Konig’s Theorem). In a bipartite graph, the size of the maximum matching
equals the size of the minimum vertex cover (a set of vertices that together touch every edge).

Proof. Assume we have vertices {a;} in one independent set and {b;} in the other indepen-
dent set of the bipartite graph.

Relabel them so our maximum matching is (a1, b1) ... (Gm, by,). This means there are sets
of vertices {am+i} (¢ > 0) that only connect to by ...b,, and vertices {by,+i} (i > 0) that
only connect to aj ...a,, (see Fig. 1).

If some a,44,7 > 0 connects to b;, 1 < ¢ < m, then no by, £ > 0 can connect to a;,
since then we would have a bigger matching by removing (a;, b;) and adding (am+j,b;) and
(@i, bm+rk), a contradiction of our assumptions.

Therefore, for every vertex in the a-component outside the matching, add to the cover any
adjacent b; in the matching (and vice versa for every b vertex outside the matching). And
there can be no vertices in the b-component outside the matching connecting to a;, so only
one of a;, b; will be selected. If a; and b; have no adjacencies outside the matching, or have
not been selected after all the non-matched vertices are covered, then select either one for
the cover. Therefore, we will have exactly one vertex in the cover for every edge in the
matching.

This vertex cover covers all vertices outside the original matching and clearly covers all the
vertices aj...am,b1...by too. It is the minimum as any vertex set smaller than size m
cannot cover the vertices in the matching.
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Figure 1: Green is the maximum matching. Red edges as such cannot exist.

3 Brooks’s Theorem Original Proof

Theorem 3.1 (Brooks). If a graph G is not a clique and not an odd cycle and has maximum
degree d, it can be properly vertex-colored with d colors.

First, some lemmas. Call graphs which are not themselves odd cycles or complete graphs
allowed graphs.

Lemma 3.2 (Augmented odd cycle colorability). If an allowed graph G consists of an odd
cycle Cy, plus an additional vertex v, it is colorable with maximum degree = d colors.

Proof: G —v = C,, is colorable in three colors, an alternating chain of 5 red, blue pairs,
plus a final green vertex. Since G is an allowed graph, v is connected to C,,, and therefore
some vertex in Cy, has degree 3.

If deg(v) > 4, color v yellow, and x(G) <4 <d. If deg(v) <2, a color is clearly available
forv, so x(G) =3 =d. If deg(v) = 3, we consider first n = 3. This is disallowed since G
would be a complete graph. Then since n > 4, there is a verter unconnected to v. Rotate
the colors of Cy, so this one is green and color v green. Then x(G) =3 =d.

Lemma 3.3 (Augmented complete graph colorability). If an allowed graph G consists of a
complete graph K, plus an additional vertex v, it is colorable with mazimum degree d =n



colors.

Proof: K, is clearly colorable in n colors. Since G = (V,E) is an allowed graph, 0 <
deg(v) < n, and v is connected to K, in G. This means some vertex in K, must have
degree n. Additionally, since G is an allowed graph, there must be some vertex w, (v,w) ¢ E
with degree = n — 1. Color v the same as w. The graph is colorable in n colors, with max
degree n.

Proof of Brooks’s theorem:

Note: We assume this is a connected graph; if it’s a disconnected graph, then the maximum
degree of any component will be less than or equal to that of the graph, and we can color
each component separately by the procedure below. We also ignore the degenerate graph
of a set of isolated vertices.

We will take any allowed G and proceed by induction on induced subgraphs G* = (V*, E¥)
of G.

Base Case: |G*| = 2: If connected, the graph is a single pair, a clique of size 2, colorable
with two colors.

Inductive Case: Assume for all induced subgraphs of G* of G = (V, E), the proposition
holds and G is not an odd cycle or a complete graph and has max degree d(G).

Remove a vertex v of lowest degree in G. By inductive hypothesis the induced graph
G* = G — v, with max degree d(G*) < d(G), is colorable in d := d(G*) colors.

Also, we assume d > 3, since otherwise we are done:

o If d =1, we have a set of pairs. If deg(v) = 1, G is 2-colorable. If deg(v) = 2, and it
is connected to two vertices in a pair, we have a disallowed component of graph G.
If deg(v) = 2 and it is connected to two different pairs, that path is two-colorable. If
deg(v) > 3, color the pairs red-blue and v green.

e if d = 2, and does not include an odd cycle component (handled below), then in-
cluding a connected v brings max degree of G to at least 3. Color the even cycles
red-blue and v green.

Let’s also treat easy cases of the induction:

e If any induced graph component is a cycle, then the cycle plus v is colorable in 3
colors by the Augmented Odd Cycle lemma or the argument above for d = 2 (even
cycle). Since d(G) > 3, this component is covered.

e If any induced graph component is a complete graph, then adding v makes it col-
orable within bounds by the Augmented Complete Graph lemma. This component
is covered.
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Figure 2: Disrupt any alternating path and colorability follows

e If the maximum degree d(G*) greater than deg(v), color the induced graph with
d(G*) colors, and there will be at least one left for v.

Because of the last case, we assume every vertex in G* has degree at most deg(v)+1.

We will illustrate this with d(G*) = 3 (thus d(G) < 4) and then argue this generalizes to
d(G*) > 3.

Include v, uncolored, back into the graph G* as shown:

If d(G*) = 4, we ignore the presumed ’yellow’ vertex connected to v for now (see argument
for ’only three colors matter’ at the end).

Our goal is to change the number of colors among {A, B,C'} to less than three. If that is
the case,then v has a free one to select and we’re done.

More assumptions:

e If two of v’s neighbors share a color already, then we’re done. Therefore, assume v’s
neighbors A, B, and C are colored red, green, and blue, respectively.

o (*) We show paths between A and C (ignoring D and E for the moment), A and B,
and B and C, possibly just a single edge. They cannot all be single edges, however.
If so, G = {A, B,C,V} was a complete subgraph K. If disconnected from the rest



of the graph, we have a disallowed condition. If one of these vertices shares an edge
outside of this set with some vertex w, then the max degree of G* is 4 and v can be
colored yellow. So at least one of the three paths has more than one edge (and since
alternating colors, must have at least three edges). Here, without loss of generality,
we make it the red-blue path from A to C. (Note: if deg(v) = 4, the same logic
applies: there must be a selection of A, B, and C such that two of them are not
directly connected.)

e If there is not an alternating red-blue path from A to C, then switch red and blue
along that path and and transitive neighbors. The graph will still be valid, with A
and C both blue. Color v red.

e The same logic applies for red-green paths between A and B, and blue-green paths
between B and C.

e So assume there are these three alternating color paths as shown in Fig. 2.

If we can flip exactly one endpoint of any of these three paths (A, B),(B,(C),(A,C), we
can color v freely.

We introduce another other lemma to help us do our flipping:

Lemma 3.4 (Splitting Lemma). If an alternating color path encounters a vertex where two
successive (yet unflipped) vertices share a color, then then transitive chain starting from
the beginning to this point can be flipped.

Proof: Refer to figures. If in, say a red-blue chain (Fig. 3), w is transformed to red, x has
been transformed to blue, and y, z are both green, the chain must stop. If deg(z) = 3, it
can stay blue while not violating color constraints. If x is adjacent to an additional blue
vertex, color x yellow since deg(z) = 4. if y and z are both blue, there is at least one
other color to change x to (Fig. 4) If there is an additional vertex connected to x and it
is ’yellow’ (fourth color), the above arguments don’t change. If it is not ’yellow’, color x
yellow.

In particular, this means that if chains of two colors SPLIT into child chains, the original
chain can be flipped up to the point of intersection.

Corollary 3.5 (No crossing Lemma). If two alternating chains cross, they are both flippable
at the point of intersection.

Similarly to the splitting lemma, this means there are four vertices adjacent to the point
of intersection (Fig. 5), and therefore at least one color unrepresented in the neighbor set,
and the intersection can be colored with one of these.

Coloring the figure

Consider the first figure again, and consider a blue-green chain from vertex D.
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Figure 3: Flippable if w — x follows a red-blue chain.
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Figure 4: Also flippable if w — x follows a red-blue chain.
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Figure 5: If two flipping chains cross, they can stop at any intersection



/\

w

Figure 6: Additional colors can be ignored. Any duplicates allow flipping as usual.

e There must be a blue-green chain (of some positive length) from D, otherwise D has
three red neighbors, and the splitting lemma applies when trying to draw a red-blue
chain from A to C.

e That blue-green chain cannot intersect the chain from B to C, otherwise the splitting
lemma applies when trying to draw a blue-green path from B to C.

o If the blue-green chain does not intersect the red-green chain from A to B (or splits
on the way, meaning D can be made green), A has two green neighbors and can be
colored blue (or, if it has three neighbors, color the remaining color). Color v red.

e If the blue green chain DOES intersect the red-green chain from A to B at some
formerly green vertex w, and if w is not adjacent to A, A still has two green neighbors
and can thus be flipped.

e If in the last case, w is adjacent to A, then A has a blue neighbbor and a green
neighbor. However, C now either connects to A (through E) through a split path,
deg(A) = 4 and the other vertex is yellow (no change in argument), deg(A) = 4 and
A connects to two of the same color (flipping argument), or not at all. So C can be
flipped to red (or yellow in the third case), and V to blue.

Lemma 3.6 (Ouly three colors matter). Generalizing to d > 3 When flipping a path
starting from A, B, or C, if the number of colors available is less than d, we can always end
the chain there (Fig. 6). This means, no matter how many colors beyond three we have, if
a chain can "split”, or if every vertex doesn’t have d—1 colors adjacent to it (excluding its
own color), then we can stop our path flipping at that spot and convert the color of origin
(in our case, A, B, or C).

Therefore, even if d(G*) = 3+ 7,7 > 0, we can ignore all of the j colors outside of these
three when constructing these paths. The argument for at least one cycle of degree greater



than three (marked (*) above) holds as well, since complete graphs of degree d follow the
same argument.

4 Dirac’s Theorem Original Proof

Theorem 4.1 (Dirac). An n-vertex graph in which each vertex has degree at least § must
have a Hamiltonian cycle.

First, some lemmas:

Lemma 4.2 (Minimum cycle length). If a graph has vertices all of degree d > 2, there
exists a cycle within it of length at least d + 1.

Proof: A greedy algorithm suffices here. Select any starting vertex v. Define the ”seen”
vertex list Las {v} and head vertex h as v. N(h) is a function defined as the neighbor set
of some vertex h.

1. If N(h) C L, pick the earliest vertex in the list e. Then the cycle is the slice of L
between e and h, with h connecting to e at the end. Because h has degree > d, e
must be at least d vertices back in the list, making the cycle length at least d + 1.

2. Else append h to L and set h to one of its neighbors not in L.
Suppose there is a graph of G of even vertex count n > 4.

There must be a cycle of size s at least § + 1 by the Minimum cycle length lemma. Call
this component C' and the complement D := G — C.

Lemma 4.3 (Crowded neighbors principle). : If there are n vertices in a cycle, selecting
5] + 1 of them must yield at least two neighboring vertices.

Proof: Selected vertices cannot outnumber unselected vertices since every selected vertex
must be followed by an unselected one in a cycle without neighbors being selected.

For Dirac’s theorem, we first dispatch with small vertex counts:
e This is meaningless for n € 1,2. No cycles are possible.
e This is clear for n = 3: a triangle.

e For n = 4, connected vertices a and b must be connected to ¢ and d respectively (blue
edges in figure), or both to some ¢ (red edges). See Fig. 7.

— If the first (blue) case, if ¢ is connected to d, we have a 4-cycle. If ¢ is connected
to b, then d must be connected to a or ¢, both yielding cycles.

— if the second (red) case, d is connected to two of {a,b, c}, creating a 4-cycle.

10
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Figure 7: n = 4 necessitates a Hamiltonian cycle when all degrees > 2

Lemma 4.4 (Dirac’s Theorem,vertex count n > 4,n even). : Dirac’s theorem holds for
G = (V, E), where vertex count n:= |V| > 4,n even.

Proof:

First, in such a graph there must be a cycle of size s at least 5 + 1 by the Minimum Cycle
Length theorem. Call this set of cycle vertices C' and the remaining vertices D. Assume
D is non-empty (otherwise s is a Hamiltonian cycle). Therefore, |s| = |C| <n — 1.

Also, two definitions:

e For vertex d € D, define the out-degree out(d) to be the number of vertices d is
connected to in C.

e For vertex d € D, define the in-degree in(d) to be the number of vertices d is connected
toin D.

We seek to prove that if the degree of every vertex is > 5 and D is non-empty, a cycle
larger than s can be formed. With that, we set the larger cycle to C and remove those

vertices from D. We then repeat until D is empty and C' is a Hamiltonian cycle.
Let k& be the minimum in-degree of the vertices in D.

e If £ = 0, then some vertex d € D has out-degree > . Since [s| <n—-1< 23,
by the Crowded Neighbors Principle, d must adjoin two adjacent vertices a,b € s. A
longer cycle than s is (a,...,b,v,a), with a,b connected ”the long way ’round”.

o If £ = 1, then |s| < n — 2, and some vertex d € D has out-degree > § — 1, If
|s| <n—2=2(5 —1), two vertices in s are adjacent to d by Crowded Neighbors. If
|s| = 2(5 —1), any two of d’s adjacencies in s, say c1, co must all be at least two edges
apart (not adjacent) in the cycle for no greater cycle to form; otherwise the path
(c1,...,c2,d,c1) is longer than (ci,...,co,c1), again, going "the long way 'round”.
This means d is connected to exactly ”every other vertex” in s.

Then d’s neighbor d; € D must have at least one adjacency in s, call it ¢;. However,
c1 cannot be more than two vertices apart from some d-connection ¢ € s. Adding

11
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Figure 8: There is not enough room for di, ds to not create a bigger cycle

the path (¢, d, di, 1) to s and removing the path between ¢ and ¢; (max length two)
increases the cycle length of s.

o If k > 2, there is a cycle of length at least k + 1 in D by the minimum cycle lemma.

There is some vertex d € D with degree k in a cycle of length at least k + 1 (to
see this, apply the minimum cycle length theorem algorithm starting with d). This
means d has § — k neighbors in C, which must span a path of at least 2(§ — k) — 1
vertices if they are each at least two apart (otherwise, adding the ’jump out to d’

and removing the original cycle edge increases cycle length). (See Fig. 8).

But d also has two neighbors in D: d; and ds, in a cycle of length at least k + 1, so
di and dy have a path of £ — 1 vertices between them, inclusive. d; has at least one
neighbor in C, e which must be k + 1 away from any of d’s neighbors d; (otherwise,
if d; connects to e, and e is less than k + 1 vertices away from some ¢; along s, then
(e,d1,...da,d,c;) is a cycle of length k + 2 or greater). This is the same for dy with
neighbor f. This means that C' must contain 2(fracn2 — k) —1+4+2(k+1)=n+1
vertices, which it does not.

Case where n is odd, n > 4: If n is odd, then remove any vertex a. This reduces
the degree requirement for all vertices by one (e.g. degree greater than 7/2 means 4, and
degree greater than 6/2 means three). There must be a Hamiltomian cycle among the n—1

12



vertices by the even case.. But a is must be connected to two adjacent vertices b and c as
its requirements mean it is connected to more than half of the remaining vertices. By the
Crowded Neighbor principle, there are two adjacent vertices in s, b and ¢, connected to
a. Remove the edge (b, c) from s and insert the path (b, a,c) and we have a Hamiltonian
cycle.

5 Lovasz’s Theorem Originial Proof

Definition 5.1 (Perfect Graph). A weakly perfect graph G has a chromatic number x(QG)
(the number of colors required for a vertex coloring) equal to its clique number w(G) (the
size of its largest fully-connected subgraph or clique). A refinement of this, a strongly
perfect graph G, has this property for every induced subgraph G* C G.

Theorem 5.2 (Lovasz). The complement of any perfect graph is perfect.

Let’s start with a seemingly smaller theorem: A cobipartite graph (complement of a bipar-
tite graph) is perfect. Since a bipartite graph is clearly perfect (chromatic number of two,
clique number of two), showing this proves Lovasz’s theorem for a subset of graphs.

In a cobipartite graph, there are two cliques, K,, and K,, with some set of connections
between them.

Denote the maximum clique C,,UC),, where C,, C K,,, C,, C K,, and call M the remaining
vertices in K,,. These are the vertices we need to color in |Cy,| colors to showK,, U K,, is
a weakly perfect graph.

Define the fanout F'(S) of a subset of S C M as the set of vertices in M that are NOT
connected to Cy,. (This is an odd name, but it defines the set of colors M can take).

Lemma 5.3 (Expanding fanout lemma). |F(S)| > |S| for all S C M.

Proof: Suppose that |F(S)| < |S| for some S C M. This means that S is connected to all
of Cp, (since M C K,,), and everything in C,, except some set F'(S). However, the clique
SUC, N(Cy,— F(S)) is larger than C,, N C,, since |F(S)| < |S|, which contradicts the
maximality of C,, N C,.

This also implies that |F(M)| > [M|, so |Cy| > |M].

Lemma 5.4 (Fanout colorability lemma). For every such S C M with fanout F'(S) where
|F'(S)| > |S|, S can be colored with the colors of F(S).

We proceed by induction.

Base case: If |S| = 1, then there is at least one vertex in C), unconnected to S, and we
color it trivially.

13



Inductive step: The inductive step will be by contradiction. Suppose this is true for all
|S| < k but NOT true for |S| = k. First, if there is a subset of T" of S where |T| = |F(T)|,
then |F(S—T)| > |S—T|, and we have two smaller sets we can color separately by inductive
hypothesis. Thus, we assume |F(T')| > |T'| for all T' C S.

If T'and S — T both have fanouts larger than they, then they have to intersect in some
vertex X € F(S). Color this vertex in T the color of the corresponding vertex in C,
(remember, they are the ones NOT connected to Cy) and remove it from 7" and S — T
These reduced sets are colorable by inductive hypothesis.

Therefore, M can be colored with the colors of C},, and by symmetry, N can be colored
with the colors of Cp,.

Lovasz: Say a graph is perfect and colorable in k colors. This is actually a k-partite
graph, where each partition corresponds to one of the k colors. Its complement has cliques
K;...K}, with some maximal clique among them.

The logic of the cobipartite graph applies completely; when discussing some M excluded
from the maximal clique, it did not matter how C,, was distributed among other partitions.
In a bipartite graph, they were all in a second partition, but in a k-partite graph, they could
just as easily be spread among k& — 1 partitions. So each excluded subset M; of a partition
can be colored with the colors of its fanout (among all Kj,j # ¢), no matter where they
are grouped, and we have a perfect graph. We can say that a weakly perfect graph has
a weakly perfect complement and by the Expanding Fanout Lemma, which will hold on
every induced subgraph, a strongly perfect graph has a strongly perfect complement.

6 Turan’s Theorem Original Proof

Theorem 6.1 (Turan). If a graph G = (V, E) on n vertices satisfies |E| > 3 n? (1 - %),
then G contains a (k + 1)-clique.

Define: 1 1
f(n, k) = 5712(1 - E)

Contrapositive. If G has no (k + 1)-clique, then

|E| < f(n,k).

Proof Plan: If we can transform any graph G = (V, E) without a (k + 1)-clique into
a graph G* = (V,E*) where G* has no (k + 1)-clique and |E| = |E*| < f(n,k), the
contrapositive of Turan’s theorem follows directly.
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We consider such a set of graphs next: k-partite graphs. An example of these is bipartite
graphs (k = 2).

Lemma 6.2 (k-partite bound). A k-partite graph on n vertices contains no (k + 1)-clique

and satisfies
|E| < f(n,k).

(The proof of the k-partite bound lemma is in a later section.)

Lemma 6.3 (Transformation lemma). Let G be a graph on n vertices with no (k + 1)-
clique. Then there exists a k-partite graph on the same vertex set with the same number of
edges, in particular:
1 1
E <472(1—4),
Bl < gn k

Additionally, G possesses a vertex of degree at most n(l — %)

Base case

For n <k + 1 the claim is immediate: the complete graph K41 contains %(k‘ + 1)k edges.
If we have less than or equal to %(k + 1)k — 1 edges, we cannot form a k + 1-clique. We
show that this edge count is less than the bound.

1 ko1
-4 2< 1
2 3 T3 =0 (1)
_ k< 2 R S
ShP SR R < SRR = ko (2)
1 1 1
#ﬁ+§ﬁ—k§§wﬁmm+nw—1) (3)
1 1 k—1
- Dk—1< = 12— 4
sk + 1k —1<S(k+1)"— (4)

(1) is clear since k > 1.

Then, any graph avoiding a (k+ 1)-clique already satisfies the bound and is itself k-partite
(some parts may be empty).

Because |E| < in?(1 — 1), the average degree is at most n(1 — ); hence some vertex has
degree at most |(n(1— ).

Inductive step

Assume n > k + 1 and that the lemma holds for all graph of vertex count n or fewer. Let
G be a graph on n + 1 vertices with no (k + 1)-clique.

15



Every induced subgraph of size n also avoids (k + 1)-cliques and so meets the edge bound

f(n, k).

Goal: find a vertex v of degree

deg(v) < D:=n— L%J .

If so, we apply the induction hypothesis to G — v to obtain a k-partite graph, then assign

v to a smallest partition (necessarily of size < [7]), rewiring its at most D edges across

the remaining partitions. The resulting graph is k-partite with the same edge count as
G.

Lemma 6.4 (Degree bound lemma). The above-mentioned bound |n(1 — +)| is equal to
the bound target bound D if k | n and equal to D — 1 if k{n.

e 3= 10Dl

the floor operation becomes the identity and equality follows.
Ifn=qgk+r[n(l-—1)]=(gh+r)—qg—%F],andn— %] =qk+r—[(¢g+F)]
Taking out the integer gk +r,[—q— 1] < —|g+7/k], and they lie on either side of integer
—q, so [n(1— %)J =n—|z] -1
Existence of a small degree vertex

e If k1 n, choose any subset of n vertices of G, excluding some vertex v,

By induction the subset contains a vertex w of degree < n(1— %), which is < D—1 by
the Degree Bound Lemma, so the whole graph has such a vertex. Even if (v,w) € F,
w satisfies the degree bound.

e Suppose now k | n (no more floors!) and, toward contradiction, that every vertex
satisfies deg(v) > D + 1.

= n + 1 induced n-vertex subgraphs. By induction each has
1 1
k) = n? (1 - f)
Fn k) = 5n2(1- 3
edges. Summing and dividing by the multiplicity n — 1 with which each edge is
counted (two subgraphs will contain its endpoints), we obtain an upper bound

L3 +1
Count edges in all (")
at most

n+1

Tu er —
PP n

_1f(n,k:).
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On the other hand, our degree assumption forces at least

n+1

Tower = 2 (TL - % + 1)
edges in total. Compute
n+1l n—k
Tower — Tupper = B 7]{(,” — 1) >0

because n > k. This contradiction establishes that a vertex of degree < D exists.

Completion of the inductive step

Removing the low-degree vertex and applying the rewiring argument yields a k-partite
graph on n + 1 vertices with the same edge count as G. Hence every (n + 1)-vertex graph
without a (k + 1)-clique satisfies

Bl < gn2(1- 7).

Corollary (Turan). If |E| > in%(1— 1) then G must contain a (k + 1)-clique.

Proof of k-partite lemma

A k-partite graph has k partitions of vertices, within which all are disconnected. The ver-
tices from differing partitions may connect. Clearly, a k+1-clique cannot exist among them,
as vertices within each partition are disconnected, and there are only k£ partitions.

A perfectly balanced graph has partitions all of equal size.
Proposition 6.5. The edge-count formula of a perfectly balanced k-partite graph is

By (n k) = ”22(1—;)

Each of n vertices connects to n% vertices in other partitions. We divide by two to get
the number of edges.

Proposition 6.6. The edge-count formula of a perfectly balanced graph of vertex total n
1s the upper bound to any partitioning of vertices among k partitions.

We are looking at maximizing f(a) = %ZZ&” j<k @iaj, where a; is the vertex count of
partition i.
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We can write this as

k k k
o1 1 1
f(a):§ E aiaj:(g ai)Q—ig ai2:n2—§g a;?
i#j3i.5<k i i i

So we are looking at minimizing the final term to maximize f(@)

Consider the definition of statistical variance:

k k

Var(ay,ag...ap) = Y (a; — @)* = Y (a7 — 2aa; + a°)

i=1 i=1

So Var(ar,as...ax) = L[S (a?) — 2a(XF_, a;) + ka?]
Note that 2&(226:1 a;) = 2ka>.

Thus, ignoring constant terms, minimizing Var(ai,as...ax) is the same as minimizing
Yot a;%. But the variance reaches its minimum at zero when all values a; are equal. This

is therefore bounded by the edge count of the equal partition Ey(n, k) = "72 (1 — %)

Conclusion

Therefore, any k-partite graph has less than or equal to %2 (1 — %) edges.

18



