# The Office DVD Problem 

Dave Fetterman

Obviously Unemployed
7/13/22

Screensavers have captivated [this] man since the 1990s. If watched long enough, what will the spirits of the machine tell us?

Specifically, the question of whether a bouncing rectangle will slide exactly into the corner of the screen, for a satisfying, perfectly diametric rebound, was even addressed on The Office (link).
However, though these characters reportedly watched this sleep-mode drama play out for years until payoff, we ask - under what conditions will the rectangle definitely perfectly bounce into the screen's corner?

### 0.1 Statement

Suppose we have a continuous screen of length $l$, height $h$, containing an axis-aligned rectangle of length $j$ and height $k$ centered at point $(x, y)$.
Suppose this rectangle is launched at direction $\langle 1, m\rangle{ }^{\top}$ and "bounces" according to billiard

[^0]

Figure 1: The Office DVD problem's most generic setup


Figure 2: Success for $m=\frac{2}{3}, j, k=0, h, l=1$ (not to scale)
rules 2
Given $l, h, j, k, m \in \mathbb{R}$, can we tell whether the rectangle ever bounce perfectly into a corner?

We can approach this problem from the simplest version to the most complex.

### 0.2 Problem 1

Suppose $j=k=0$ and $x=y=0$. In other words, suppose we have a point starting at the bottom left corner (origin). Under what conditions (i.e. choice of $m$ ) does this bounce into a corner?

### 0.3 Problem 2

Suppose $j, k>0, x=\frac{j}{2}, y=\frac{k}{2}$. In other words, suppose we have a rectangle starting at the bottom left corner. Under what conditions does this bounce into a corner?

### 0.4 Problem 3

Suppose we have maximally open (reasonable) conditions, with $x \in\left[\frac{j}{2}, l-\frac{j}{2}\right], y \in\left[\frac{k}{2}, h-\frac{k}{2}\right]$ (that is, a $j \times k$ rectangle fitting entirely in the screen). Under what conditions does this bounce into a corner?

### 0.5 Problem 4

Some clowns 3 have come along demanding a version of the setup respecting the discrete (pixellated) nature of digital screens. Very well.

[^1]For each of problem 1,2 , and 3 , how does the answer change if the screen comprises square pixels of length ${ }^{4} p \in \mathbb{N}$, where $p \mid j, k, h, l$, and "meeting a corner" means a corner of the small (continuous) rectangle meets a wall within length $p$ of the corner point?

[^2]
[^0]:    ${ }^{1}$ Think of this as slope $m$

[^1]:    ${ }^{2}$ Glancing off a top/bottom boundary, our trajectory goes from $\langle 1, m\rangle$ to $\langle 1,-m\rangle$, with $\langle \pm 1, m\rangle$ to $\langle\mp 1, m\rangle$ for a left/right one
    ${ }^{3}$ J. H. Wang, N. H. Talbert, L. F. Waldman

[^2]:    ${ }^{4}$ If $p$ is not a whole number, this can be normalized

