
Solving N-dle using Information Entropy

Dave Fetterman

Obviously Unemployed

6/19/22, Updated: 12/12/22

Abstract

This informal paper attempts to justify the use of information entropy as a solver
heuristic for the expected value of guess count in a Wordle solution, to extend its use
to its multiplexed cousins (Quordle, Octordle, and an abstracted n-dle), to practice my
use of LATEXand Clojure, and to bore my friends.

1 Introduction

Note: This paper is a shameless tribute to and theft of Alex Healy’s On Optimal Strate-
gies for Wordle [1]. All credit to him and the nerd salon meeting in his Facebook com-
ments for clarifying the debate about the best strategy for the game.

For the likely reader, Wordle needs no introduction. The word game reskins the classic
Mastermind with a restricted answer set (a highly reduced five-letter English word list)
and restricted guess set (a larger five-letter English word list). The sharing and scarcity
aspects of the game led to its viral spread, the creation of various knockoffs, and the app’s

Figure 1: An example finished Wordle board
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Figure 2: Official Wordle rules

purchase by the New York Times. If Pee-Wee’s Word of the Day existed in 2022, this
puzzle’s solution would be it.

1.1 Wordle Rules

With six guesses to determine the hidden daily answer, each turn yields information from
the oracle in the form of Green (G), Yellow (Y), and Black (B) squares. In response to a
guess, five colored squares appear according to the rules in Fig. 2.

If the solution has five unique letters, the above rules are straightforward to interpret. If
the solution has repeated letters, note that, for any letter:

• The number of green and yellow squares returned for some letter, say A, don’t exceed
the number of instances of the letter A in the solution. (rule 1)

• All yellow squares for some letter, say B, appear before all black squares for B. (rule
2)

As an example, if the answer is PASSE, and the guess is ASSES, the unique response will
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be YYGYB, not YYGYY (violates rule 1) or YBGYY (violates rule 2).

Starting with a fixed dictionary 1, the player has six guesses from an allowed guess list 2

to enter the hidden answer word (that is, receive all greens as a response). Again, this is
very similar to Mastermind 3.

1.2 Wordle Objective

In Wordle, user gets a win if they can guess the hidden answer in six or fewer guesses, but
given the social sharing in the game, bragging rights go to the solver who finishes in the
fewest guesses. The task of optimizing guesses suggests different metrics (some unique to
n-dle, n > 1), though these two seem ripest:

• The likelihood of finishing within six guesses.

• The expected number of guesses required to finish.

At any stage of solving the puzzle, our state comprises the remaining guess count (starting
from six and decrementing), the allowed guess list (an unchanging word list), and the
solution dictionary (starting at the list of 2309 and successively filtered to only viable
words given previous turns). It’s then natural to ask:

• What’s the best next guess at this point?

• What’s the best opening guess? This is a specific instance of the previous question
with the entire word list and six guesses remaining.

This investigation employed an original solver and small test harness written to solve
exactly these questions, aiming to minimize the expected guess count. 4

2 Information Entropy

Among others, Alex Healy made the case [1] for minimizing guess count using Claude Shan-
non’s measure of Information Entropy [2] as an evaluation heuristic for possible guesses at
each stage. Entropy, though a powerful concept, seems fraught with different connotations
connected in sophisticated ways. Among other definitions, entropy can mean:

1. Statistical randomness or disorder, especially in a physical system.

2. The amount of “information content” or “surprising-ness” of an event.

1Assumed here to be the 2309 words in https://github.com/fettermania/wordle-solver/blob/main/

wordle-answers.txt
2The 12947 words in https://github.com/fettermania/wordle-solver/blob/main/

wordle-allowed-guesses.txt
3Note that ”hard mode” Wordle, which has additional restrictions, is not treated here.
4https://github.com/fettermania/wordle-solver
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3. The minimum number of average bits required to specify a (string) message over a
fixed probability distribution.

4. A specific function H(E) = −
∑

Ei∈E log2(pi)pi, over an event space E, where event
Ei has associated probability pi, and further, which has these properties:

• H is continuous over p1, ..., pn.

• If every pi = 1/n, then H increases monotonically with n.

• A composition law basically stating that renaming events through nested event
spaces doesn’t change the overall entropy of the set.

While the common definition (1) has an interesting connection to definition (3), and many
papers use (2) as a shorthand, we will focus on definition (3) as motivation, and sometimes
simply as a pure heuristic (4) with properties useful in Wordle.

Information entropy has a wide set of applications in computer networking, data science,
and in general, communicating symbols, a place many of us find ourselves terminally and
from which, not coincidentally, Wordle provides our brief escape.

2.1 Entropy as minimum bits of message content

Suppose a set of events E associates each member Ei with a probability pi. Loosely, suppose
you need to communicate which of a set of events had occurred to a listener, who has no
other information. The information entropy is then the expected value of the number
of bits required to communicate that event over the prior probability distribution of the
events.

I like to visualize this in in terms of Huffman tree variable-length encodings [4]. Consider
a language of three symbols (events) E = {A,B,C}, with likelihoods of occurring listed
below, and the ideal encoding that falls out:

• A: encoding 0, pa = 1
2

• B: encoding 10, pb = 1
4 .

• C: encoding 11, pc = 1
4 .

The average number of bits required to express a symbol is then 1
2 ·1+ 1

4 ·2+ 1
4 ·2 = 3

2 .

It’s not hard to see the form of H(E) = −
∑

Ei∈E log(pi)pi =
∑

Ei∈E log( 1
pi

)pi here. If,

instead, events C and D had probability 1
8 , encoding them (“locating it in the event space”)

would each require log2(8) = 3 bits. It’s clear in this case that the average length of the
encoded message exactly corresponds to the entropy measure of this event space.
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In this contrived example, where all events are independent and have probability of the
form 2−n, n ∈ N, the Huffman encoding is known to be optimal, and the average length
of an encoding over this probability distribution is exactly Shannon’s entropy measure
[4].

2.2 A Uniform distribution

In first part of the last example, event A was twice as likely as B as well as C. An important
case to consider is a uniform distribution: when all pi are identical. If we were looking at
communicating (encoding) one of the 2309 words in the Wordle dictionary as the answer,
with all assumed to have equal probability, our entropy is then

H(E) = −
∑2309

i=1 log2(pi)pi = −
∑2309

i=1 log2(
1

2309) 1
2309 = log2(2309) = 11.173.

This should not surprise. If you needed to communicate a message using 128 symbols with
a uniform random distribution, you would need log2(128) = 7 bits for each. The ASCII
encoding is one such example. But here, with about 4 more bits, you can encode not just
a character but all words in the Wordle answer list!

If our dictionary of viable answers, filtered through learnings from previous guesses, is of
size m, then our entropy measure of our answer set (filtered dictionary) at that point will be
log2(m), since each word is assumed equally likely. Notably, a single viable word remaining
(a finished game) has entropy of log2(1) = 0. The solver’s goal is to narrow its (filtered)
dictionary to a single word, or, equivalently, to an event set with entropy zero.

2.3 Applying entropy to Wordle

Let us put probability aside for a moment and just think about playing Wordle to minimize
our guess count.

As Alex Healy discusses [1], each guess in Wordle yields a colored tile response in E =
{B, Y,G}5, and partitions the possible answer words among those 243 sets (“events”)

EBBBBB, EBBBBY , EBBBBG, ..., EGGGGG ∈ E.

Again, if the guess is ASSES, the answer PASSE would be in EY Y GY B, and the answer
ASSES would be in EGGGGG.

If the dictionary were sufficiently reduced, (to say, 3 words), an ideal situation would see
each such response set containing zero or one words. This means the next guess will
either be a winner or eliminate two possibilities, producing a winner on the subsequent
guess.

The other end of the usefulness spectrum would be a guess with something like: |EBBBBB| =
3. Then, making this guess moves us no closer to the answer.
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Say our event space (dictionary) is E = {dairy, brink, bring}. A guess of dairy would yield
the response set:

• {G,G,G,G,G} → (dairy).

• {B,B,G,B,B} → (brink, bring).

One third of the time, we finish the game, and two thirds, we must navigate through a set
of 2, which takes an average of 3

2 more guesses.

If, instead, we guessed brink, our response set would be:

• {G,G,G,G,G} → (brink).

• {G,G,G,G,B} → (bring).

• {B,B,G,B,B} → (dairy).

In this case, we either get our guess right or have a set of one to land on.

It’s no surprise that, we prefer the second scenario; therefore, brink (or bring) is the
appropriate guess here. It is here that we connect to the entropy measure.

2.4 Defining Wordle response set entropy

We’re going to measure the effectiveness of any given guess across the current dictionary
by looking at the distribution of possible dictionary states after executing the guess. Some
of these states will bring us right to an answer, while some will leave us with a dictionary
not much reduced from our current one. We are looking to optimize the average entropy
of the remaining dictionary given our guess.

H(solution|guess) =
∑

i∈{B,Y,G}5 log(1/pi)pi.

However, how should we define pi in this case? Consider that, at any point of the game,
all remaining words are equally likely to be the solution. Then, the chance that the answer
is in set Ei is its proportion of the remaining dictionary E (|E| =

∑
i∈{B,Y,G}5 |Ei|), or

pi = |Ei|
|E| . This renders our entropy measure as :
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H(E|g) =
∑
i∈E

log(
1

pi
) · pi (1)

=
∑
i∈E

log(
|E|
|Ei|

) · |Ei|
|E|

(2)

=
∑
i∈E

(log(|E|)− log(|Ei|)) ·
|Ei|
|E|

(3)

=
∑
i∈E

log(|E|) · |Ei|
|E|
−
∑
i∈E

log(|Ei|) ·
|Ei|
|E|

(4)

= log(|E|)
∑
i∈E
· |Ei|
|E|
−
∑
i∈E

log(|Ei|) ·
|Ei|
|E|

(5)

= log(|E|)−
∑
i∈E

log(|Ei|) ·
|Ei|
|E|

(6)

This measure (6) was used in Alex Healy’s paper [1] in a different form (I’ll name it (7)),
written simply as:

H(solution|guess) =
∑

i∈E log(|Ei|) · |Ei|
|E|

In this case, a (highly desired) response set in which every Ei contained at most one word
would necessarily be of zero entropy, while (6) would yield maximal entropy log(|E|). What
gives?

Entropy (6) characterizes the bits required to communicate an event among many out-
comes, or the entropy the oracle gives up in yielding its response. The Wordle metric (7)
represents an expected value of how much entropy remains. For any Ei, the entropy (num-
ber of bits required to communicate a member of this uniformly distributed set) is log(|Ei|),
so the measure falls out readily. Then, we seek to maximize the information given up by the
response (6) in order to get (7) as close to 0 as possible. These metrics differ by a constant
factor, which doesn’t interfere with combining entropies together (which we’ll do later),
but this clarification helps me conceptualize why, using one equation a maximally entropic
(spread out) solution set is desired, while in another form, we push our total entropy to
zero.

3 Applying entropy to Wordle

The greedy algorithm for solving Wordle with answer list E and viable guess list G using
entropy is straightforward:
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1. If E is of size 1, exit with answer.

2. For each g ∈ G:

(a) For each a in E, compute which response set Ei (for example, EY Y GY B) each
answer a would fall into given guess g.

(b) Compute H∗(E|g), where H∗ = −100 if |E| = 1, else H∗ = H from form (7)
above 5

3. Choose the g that minimizes H∗(E|g). 6

3.1 Initial entropies for first subpuzzle solved

The starting entropies for a full dictionary of 2309 words are listed below. (Words in the
answer list are in bold)

Since we start at an identical state for each board (2309 words remaining), the entropies for
legal first subpuzzle solvedes below occur for all games of Wordle, as well as n-dle versions
we will see shortly. Bold guesses indicate those in the answers list.

word post-guess entropy

soare 5.287849713481362
roate 5.288196144042106
raise 5.294749501280944
reast 5.305314436930554
raile 5.307898628732849
slate 5.317233213664601
salet 5.337029675681638
crate 5.337836475140834
irate 5.34025357683321
trace 5.342623349694359

Because the algorithm is entirely deterministic, the solution of each of the 2309 Wordle
puzzles (completely specified by the answer word) necessarily started with soare.

3.2 Results of Greedy Entropy algorithm for Wordle (1-dle)

Since there are only 2309 possible games of Wordle, we can simulate each game using the
greedy algorithm with entropy heuristic to see its performance.

5This -100 encourages selecting a viable answer on the next guess (filtered dictionary of size one, entropy
zero) over a larger set of entropy zero which solves in two guesses.

6Should guesses see ties for lowest entropy, the algorithm should either take a deterministic stance (e.g.
first alphabetical) or a fair one (random selection), depending on the goals of the investigation.
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(a) guesses required (b) frequency of openers

Figure 3: 1-dle (Worlde) results on all 2309 answers

guesses count proportion

2 22 0.0095
3 888 0.3846
4 1298 0.5621
5 99 0.0429
6 2 0.0009

• Expected Guess Count: 3.640970117

• Opener 1: soare, clint (0.1797314855)

• Opener 2: soare, thilk (0.05283672586)

• Opener 3: soare, denet (0.0515374621)

• Opener 4: soare, tined (0.05067128627)

• Prevalence of top four openers 7 openers: (0.3347769597)

These results are very similar to Healy’s results on a dictionary of 2315 [1], with some
moderate differences 8. Of note is that all words are solvable in six guesses (the maximum
allowed for the game), the average word takes about 4 guesses to pin down, and the top
four second guess (post-soare) words only constitute about a third of the optimal plays.
We will revisit these numbers later.

3.3 Entropy advantages

The faults with this algorithm are expected.

7Four chosen somewhat arbitrarily, but where the curve bends strongly.
8On correspondence, Healy has a better strategy for favoring dictionary guesses on ties
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• Although guesses are commutative (playing words in different orders yields the same
filtered dictionary), since not every word is playable (unlike Mastermind), optimizing
for only the next guess may miss a more globally optimal solution. More generally,
it is not obvious to me that minimizing the entropy measure minimizes the expected
value of guesses remaining in all cases.

• If we are optimizing to get under, say, six guesses, choosing a guess with “maximal
information” that’s not in the answer list may still be suboptimal compared to a shot
at an answer.

However, one major advantage of the entropy approach is the easy scale when
expanding the game to multiple independent boards, as in Wordle derivatives
Quordle (4 boards) and Octordle 9 (8 boards). Via entropy, we can calculate a
candidate guess’s effectiveness on each board’s answer dictionary, and then look for the
minimum summed entropy across all boards. With N boards, this means we can do cal-
culations on |G| ·N possibilities (calculate board’s entropy for each guess on every board)
than |G|N (consider every possible N-tuple of answers).

4 N-dle using entropy

Figure 4: Example Quordle board

While in 1-dle (Worlde) we’ve defined our events Ei in a way such that, on one guess, they
can never co-occur, using entropy as the scoring function starts to make even more sense
when considering two independent boards. Here, take X to be the (uniform) distribution

9I often refer to these as 4-dle and 8-dle, respectively, my own shorthand.
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of possible remaining answers on one Wordle board with a secret answer ax, and Y to be
another with an independently chosen answer ay. Note that the legal guess set G does not
change across turns or boards.

If we consider a “response” function R(g, a) which takes a guess and an answer and outputs
a color-tuple response r ∈ {B, Y,G}5, it should be clear that knowing R(g,X) yields no
information about R(g, Y ) (and vice versa). If a guess g has some probability pi of ending

up in set Xi, that’s only because there are pi = |Xi|
|X| remaining answers a in X in which

R(g, a) ∈ Xi, and similarly for pj in every set Yj . The choice of ax and ay are independent,
and therefore, these variables are as well.

Since X and Y are independent, the entropy of their joint distribution is the sum of the
entropies of the individual distributions. This is a known result [3] but also falls out of the
composition requirement for entropy.

We’ve argued that this pairwise independence is true for two boards, and it
logically can be extended to three, four (quordle), eight (octordle), and so on.
This means we can look at a similar algorithm for “N-dle”:

1. If there are no unsolved boards, exit.

2. For each board n of board set N:

(a) For each g ∈ G:

i. For each a in En, compute which response mask set Eni (for example,
EY Y GY B) each answer a would fall into given guess g.

ii. Compute H∗(En|g), where H∗ = −100 if |En| = 1, is 0 if |En| = 0, else
H∗ = H from form (7) above. 10

(b) Choose the g that minimizes
∑

nH
∗(En|g)

Note that, because our measure
∑

nH
∗(En|g) is the sum of the entropy measures from

Wordle (1-dle), the minimum entropy word starting from a full dictionary (soare) also
minimizes this summed entropy. So, every simulation in this whole paper therefore opens
with guess soare.

5 Experimental Results for N-dle

For 2-dle and beyond, computing the best path through 2309n possibilities quickly becomes
untenable. So, for this (as well as 4-dle and 8-dle), we settle for a simulation of 10000

10This means that we’re going to immediately solve any boards of dictionary size 1, always a correct
guess for minimizing our expected value. To see that’s true, commute that guess with a non-solving guess!
And if you are solving 10+ puzzles at once, feel free to magic up this -100 number appropriately.
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random board sets. Note that these may not correspond exactly to a the distribution of
Quordle or Octordle proper, as (a) this is a random sampling of a large space, and (b)
simultaneous duplicate answers may occur in our simulation 11 but are likely not included
in the public Quordle or Octordle apps.

5.1 2-dle

(a) guesses required (b) frequency of openers

Figure 5: 2-dle results on 10000 random answer sets

guesses count proportion

3 11 0.0011
4 1766 0.1766
5 6981 0.6981
6 1219 0.1219
7 23 0.0023

• Expected Guess Count: 4.9477

• Opener 1: soare, clint (.3613)

• Opener 2: soare, clipt (.0699)

• Opener 3: soare, linty (.0317)

• Opener 4: soare, mulct (0.0304)

• Prevalence of top four openers: (0.4933)

A few observations from this data:

• Again, if N is the number boards (here N = 2), all answers are solvable within N+5,
with the mean around N+3.

11Our technique of summing entropies requires independence between two or more distributions, so we
have to include duplicates in the answer space.
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• The distribution of guesses has started to tighten around this mean.

• The opener of soare, clint accounts for over a third of our solver’s paths in 2-dle,
more than sum of the top four of 1-dle.

5.2 Quordle (4-dle)

Unlike 2-dle 12, Quordle is a playable game available on the internet. The question of
how to solve it within 9 moves (cover lots of letters in the first few guesses? solve the
most favorable sub-board aggressively?) does not have an obvious answer. However, when
looking at how our solver approaches the problem, it unsurprisingly appears to favor the
strategy of gathering information across all boards, and going for the throat only when the
answer is clear.

(a) guesses required (b) frequency of openers

Figure 6: 4-dle (Quordle) results on 10000 random answer sets

guesses count proportion

5 6 0.0006
6 1146 0.1146
7 6776 0.6776
8 2032 0.2032
9 40 0.004

• Expected Guess Count: 7.0954

• Opener 1: soare, clint (0.6166)

• Opener 2: soare, clipt (0.0942)

• Opener 3: soare, mulct (0.032)

12twodle.net appears to be a game but without the same setup as Quordle or Octordle. The user
ventures not one but two guesses for two separate boards
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• Opener 4: soare, linty (0.0167)

• Prevalence of top four openers: (0.7595)

Observations:

• All answers are solvable within N+5, with the mean around N+3, a consistent pattern
so far.

• The distribution of guesses remains tight around the mean, though less so than our
2-dle simulation.

• The opener of soare, clint accounts for nearly two thirds of our solver’s paths in
4-dle, almost double that of 2-dle. The opener frequency graphs from here on out
are dramatically long-tailed.

• We see a lot of familiar faces among the top four openers (clint, clipt, mulct, linty),
a rearrangement of the 2-dle headliners.

5.3 Octordle (8-dle)

Our final simulation occurred on 8 simultaneous boards. Because the algorithm has linear
runtime over the board count N, we could continue, though 10000 simulations proved
time-consuming, and the patterns have established themselves clearly at this point.

Figure 7: Example Octordle board

guesses count proportion

9 19 0.0019
10 2182 0.2182
11 6202 0.6202
12 1571 0.1571
13 26 0.0026

• Expected Guess Count: 10.932

• Opener 1: soare, clint (0.7888)
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(a) guesses required (b) frequency of openers

Figure 8: 8-dle (Octordle) results simulated on 10000 answer sets

• Opener 2: soare, clipt (0.0745)

• Opener 3: soare, mulct (0.0162)

• Opener 4: soare, glint (0.0072)

• Prevalence of top four openers: (0.8867)

Observations:

• All answers are solvable within N+5, with the mean around N+3.

• The opener of soare, clint accounts for three quarters of our solver’s paths in 8-dle.

• The relevance of optimal starters after soare, clint continues to drop.

6 Trends and Traps

A few trends seem to emerge from these results across 1-, 2-, 4-, and 8-dle.

As N increases:

• The solver seems to gravitate to a universal second-word opener in clint, provided we
don’t stumble upon one of the 22 immediate solves (see 1-dle results section). This
resonates with the “law of large numbers” intuition 13 that, as N increases, the ”best
fit” guess would only fit better.

• The mean solution seems stuck at about N+3 so far. Given that two non-answers
(soare, clint) constitute most of the openers, this means we’re looking at either one
more clarifying non-answer or one wrong answer guess on average. This could be
clarified with some more logging in the solver.

13possibly wrong
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• Almost all puzzles are solved in N+4 guesses, and a few in N+5. Considering that
6, 9, and 13 are the guess limits in Wordle, Quordle, and Octordle, respectively, it
seems the game designers have noticed this also.

However, consider the thought experiment of a 2309-word board (if chosen randomly, du-
plicates become a near-certainty).

• The first subpuzzle solved of the non-answer soare would almost certainly be inferior
to actual possible answer raise. raise has a 63.2 percent chance 14 of being in the
puzzle, and its shortfall of .01 bits of entropy 15 likely is worth less than solving an
average of one sub-puzzle.

• The maximum solution length (N) falls out of the definition, though 2309 unique
sub-boards occur together with vanishing probability.

• One suspects that the average solution length would trend from N+3 (where it seems
stuck so far) to far below N, the chance of a zero-entropy sub-puzzle emerging at
every turn. More directly, the expected portion of the answer list represented in the
boards becomes 1

2309

∑2309
1 (1− (2309−12309 )2309) ≈ 1− e−1 = .632 16, in which case we’re

solving a 1459-dle!

These generalizations follow from the observations, which could also be wrong as I broke
entropy ties arbitrarily, using the internal sorting of Clojure (or possibly JVM). Ties re-
ally should have been broken randomly (for estimating mean) or, say, alphabetically (for
cataloguing “best words”). However, this whole paper remains an exploration of just one
algorithm among many anyway.

7 An Alternative Algorithm: Vern’s Gambit

Finally, note that the algorithm detailed here not the only strategy, nor even the only
strategy relying on entropy ! Another greedy algorithm solves Wordle with answer list E
and viable guess list G using entropy, but looks to minimize the minimum entropy of the
unsolved sub-puzzles. The algorithm:

• If there are no unsolved boards, exit.

• For each board n of N:

– For each g ∈ G: f

14≈ 1 − e−1

15Although, on second look the shortfall is more like 2309 * .01 = 23 bits. Just what is eliminating a bit
of entropy worth?

16You again.
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∗ For each a in En, compute which response mask set Eni (for example,
EY Y GY B) each answer a would fall into given guess g.

∗ Compute H∗(En|g), where H∗ = −100 if |En| = 1, H∗ = 0 if |En| = 0, else
H∗ = H

– Choose the g associated with the lowest entropy H∗(En|g) in any board.

This algorithm, named Vern’s Gambit (or the min strategy), greedily chases the most
promising sub-puzzle (that with the minimum individual board entropy) instead of opti-
mizing for the total entropy of the entire system as described in Section 3. The Section 3
algorithm is called the “sum method” from here on out.

It is indistinguishable from the main algorithm in a few cases:

• When n = 1 (Wordle), these are exactly the same algorithm.

• When a board (say a single one) is solvable on the next move, the main algorithm will
see a minimum total entropy17 of −100 plus the much smaller entropies of unsolved
boards. The min algorithm simply sees −100. Each will make the same selection.

However, the data for the min method bears out major differences:

• Exhibiting higher risk-taking (variance), the maximum number of guesses for a full
puzzle greatly exceeds that of the “sum method”.

• The average guess count to solve a puzzle is higher. In 2-, 4-, and 8-dle, this is about
a half-guess.

• When compared head-to-head (that is, on the same puzzle), the sum method appears
more effective as N increases.

• The concentration of common openings (first two words) dilutes considerably as the
individual puzzles exert a strong influence on the next move with minimum entropy.

• As a sanity check, the number of guesses required to find the first sub-puzzle solution
(the algorithm’s natural goal) appears slightly smaller with the min method. As the
algorithm explicitly seeks this out, this result seems intuitive.

17Again, −100 is meant to signify “negative infinity” and should be increased or coded more logically as
needed.
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7.1 2-dle under Vern’s gambit

guesses count proportion

3 11 0.0011
4 1296 0.1296
5 5279 0.5279
6 3171 0.3171
7 242 0.0242
8 1 0.0001

(a) guesses required (b) frequency of openers

Figure 9: 2-dle results on 10000 random answer sets (Vern)

(a) last subpuzzle solved (b) first subpuzzle solved

Figure 10: Comparison of Vern and Sum algorithms on 2-dle

• Expected Guess Count: 5.234 (vs. sum strategy: 4.9477)

• Opener 1: soare, clint (.0955)

• Opener 2: soare, thilk (.0604)

• Opener 3: soare, cloot (.0358)
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• Opener 4: soare, denet (0.0341)

• Prevalence of top four openers: (0.2258).

A few observations on this data:

• The max puzzle solution length has increased from 7 (N+5) to 8 (N+6). However,
this is one sample out of 10000. It’s as likely that the sample has omitted an 8-length
puzzle for the sum method.

• While the distribution of best openers still exhibits high skew (Fig 9b) with “soare,
clint” as the headliner, the graph has a gentler slope. The min algorithm chooses
the second move based on the best sub-puzzle it sees (higher variance) rather than
the sum of the N (2) sub-puzzles. In this method, the “top four”, while an artificial
concept in the sum method, sees no such drop thereafter.

• On any given puzzle, the likelihood that the min method solves 2-dle in more moves
is about 34% (Fig 10a). A puzzle marked “1” here means the min method would
solve in, say, 6, while sum solved in 5. Ties accounted for 58%.

• As a sanity check, the min method did find its first sub-puzzle solution (only) slightly
faster, as illustrated in Fib 10b. While the algorithms tied in this metric 73% of the
time, the min method solved the first sub-board 15% of the time, as opposed to the
sum method’s 12%.

7.2 Quordle (4-dle) under Vern’s gambit

guesses count proportion

5 5 0.0005
6 633 0.0633
7 3520 0.352
8 4246 0.4246
9 1466 0.1466
10 128 0.0128
11 2 0.0002

• Expected Guess Count: 7.6927 (vs. sum strategy: 7.0954)

• Opener 1: soare, clint (.0446)

• Opener 2: soare, lemel (.0434)

• Opener 3: soare, thilk (.041)

• Opener 4: soare, clink (.0262)

• Prevalence of top four openers: (0.1552).
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(a) guesses required (b) frequency of openers

Figure 11: 4-dle results on 10000 random answer sets (Vern)

(a) last subpuzzle solved (b) first subpuzzle solved

Figure 12: Comparison of Vern and Sum algorithms on 4-dle

Observations:

• The right tail of solution length increases; more than 1% of Vern’s Gambit solutions
exceed the legal limit of 9 (N+5) guesses for N = 4.

• The top three second moves have similar probability, as opposed to one dominant
opening.

• While 41% of the time, the sum and min methods yield the same guess count, a full
53% see the sum method winning (Fig 12a).
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7.3 Octordle (8-dle) under Vern’s gambit

guesses count proportion

9 12 0.0012
10 1430 0.143
11 3766 0.3766
12 3269 0.3269
13 1273 0.1273
14 218 0.0218
15 31 0.0031
16 1 0.0001

(a) guesses required (b) frequency of openers

Figure 13: 8-dle results on 10000 random answer sets (Vern)

(a) last subpuzzle solved (b) first subpuzzle solved

Figure 14: Comparison of Vern and Sum algorithms on 8-dle

• Expected Guess Count: 11.5144 (vs. sum strategy: 10.9403)

• Opener 1: soare, lemel (.0602)

• Opener 2: soare, tichy (.0284)
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• Opener 3: soare, butch (.0217)

• Opener 4: soare, cloud (.0.0210)

• Prevalence of top four openers: (0.1313).

Observations:

• More than 2% of Vern’s Gambit solutions exceed the limit of 13 (N+5) guesses for
N = 8.

• The sum method beats min on 51% of trials (Fig 14a).

• The advantage of the min method (finding the first puzzle quickly) seem to diminish
(or be swept into the “tie” category as both methods capitalize early).

In summary, the sum method seems to outpace the min method in most met-
rics, especially as N increases.

8 Remaining Questions

Many questions remain for me. Given the volume of armchair math written about Wordle,
I can only assume others are asking (and possibly answering!) these questions also.

• Other than relative monotonicity, what is the link between the measure of entropy
and expected moves remaining? Given that the “branching factor” changes so much
through the search space, it does not seem so simple as, say, doing a binary search
with a coin.

• Mastermind, whose guess-and-answer mechanic Wordle adopted, is an entirely “smooth”
space: every guess is legal, and every combination of “letters” (colors in Mastermind’s
case) is possible (and equally so). Would this kind of result fall out of Mastermind?
Donald Knuth built a minimax-based (search) algorithm to solve Mastermind, de-
tailed here [5]. The answer to this question indicates whether our results say more
about the algorithm or the dictionary.

• There are certainly other algorithms to solve n-dle. Healy [1] mentioned looking
two moves ahead and estimating the conditional entropy there (computationally ex-
pensive), as well as limiting guesses to only (or favoring guesses which are) possible
answers, both of which can perform better.

References

[1] Alex Healy On Optimal Strategies for Wordle, http://www.alexhealy.net/papers/
wordle.pdf.

22



[2] Claude Shannon (1948) A Mathematical Theory of Communication. Bell System Tech-
nical Journal 27, 379-423.

[3] Thomas M. Cover; Joy A. Thomas (1991). Elements of Information Theory, retrieved
from https://en.wikipedia.org/wiki/Entropy_(information_theory)

[4] Wikipedia: https://en.wikipedia.org/wiki/Huffman_coding

[5] Knuth, Donald (1976-1977). The Computer as Master Mind. J. Recr. Math (9): 1-6.

23


