Brilliant: Group Theory

Dave Fetterman

$2 / 23 / 22$

Note: Latex reference: http://tug.ctan.org/info/undergradmath/undergradmath.pdf

1 Chapter 1.2

1.1 Page 1

$R\left(R_{1}(x)\right)=A \rightarrow B, B \rightarrow A, C \rightarrow C$. So reflection about CE.

1.2 Page 2

$R_{2}\left(R_{1}(x)\right)=A \rightarrow B, B \rightarrow C, C \rightarrow A$. So rotation clockwise 120°

1.3 Page 5

$R \star R=H \star H=V \star V=I$ on the letter " I ".

1.4 Page 6-9

Cayley table for rotating letter "I":

	I	H	V	R
I	I	H	V	R
H	H	I	R	V
V	V	R	I	H
R	R	V	H	I

Note: check out https://www.tablesgenerator.com/ here.

1.5 Page 10

- Klein four group: $(+,[0,1] \times[0,1])$ is equivalent to the "I" rotation.
- First coord could be: Does it rotate?
- Second coord could be: Does it flip?

2 Chapter 1.3: Group Properties

Group Properties

- Some binary operation (•)
- Identity (counterexample: even integers)
- Inverse (counterexample: integers with multiplication modulo non-prime p)
- Associativity (counterexample - on reals with an average $f(x, y)=(x+y) / 2)$?

3 Chapter 1.4: Cube symmetries

One way to think about it

- Corner A maps to one of eight corners
- Each mapping has three orientations of that corner spin (0 degrees, 120, 240)
- Therefore 24.

Another way:

- One identity $=1$
- Type I: Rotate around line joining two opposite face centers: 3 pairs * 3 non-identity spins $=9$
- Type II: Spin around line joining two opposite corners. 4 pairs * 2 non-identiy spins $=8$
- Type III: Spin 180 degrees around line from front upper edge to back lower edge. Combo of a spin and a rotate. 6 pairs $=6$.
- Sum to 24 .

Another way:

- There are four diagonals to a cube.
- Their permutations are in 1:1 correspondence with the transformations possible. (24)
- Type I keeps none fixed. 90 degrees: Chain $=4!/ 4=6.180$ degrees: two pairs. Select who A matches $=3$.
- Type II rotates three, keeps one fixed $=8$
- Type III does one swap, keeps two fixed $=\binom{4}{2}=6$

Note also: There are 24 reflection symmetries as well. (1:1 correspondence with rotations via "swap top center labels?")

4 Chapter 2.1

4.1 Page 2-3

The integers under multiplication are not a group, as they have no inverse. The set of rationals with multiplication as the group operation is not a group as 0 has no inverse

4.2 Page 5-7

- Dihedral group D_{n} has $2 n$ elements, is not commutative, not cyclical.
- If n is even, there is exactly one rotational symmetry $R \neq I$ which commutes with all the other elements of D_{n} (the 180 degree rotation)

4.3 Page 8-9

- Symmetric group S_{n} is the set of permutations on n elements.
- "in-shuffle" of a deck of four cards is "split in half, interleave top half with bottom half, top card second", or $\phi=(1,2,4,3) . \phi^{4}=I$

4.4 Page 10-11

- Cyclic group \mathbb{Z}_{n} is the set of integers modulo n under addition.
- Note that though usually multiplication is the default group operation, this usually uses " + ".

5 Chapter 2.2: More Group Examples

5.1 Page 1-2

- Order of an element g is smallest k such that $g^{k}=e$. Otherwise infinite order

5.2 Page 3

Quaternion group Q_{8} rules:

- $i^{2}=j^{2}=k^{2}=i j k=-1$
- Implies $i j=k, j k=i, k i=j$
- implies $j i=-k, k j=-i, i k=-j$
- So this is not only non-commutative but anti-commutative
- $Q= \pm 1, \pm i, \pm j, \pm k$
- So one element of order 1 , one of order 2 (element -1), remaining six of these elements have order 4

5.3 Page 4

Note that musical notes $\left(\mathbb{Z}_{12}\right)$ has only generators $1,5,7,11$. These corresponding to chromatic, circle of fourths (anti-fifths), circle of fifths, downwards chromatic scales!

5.4 Page 5

- $G L_{n}(\mathbb{R})$ is invertible $\mathrm{n} \times \mathrm{n}$ matrices in R .
- $S L_{n}(\mathbb{R})$ is determinant $1 \mathrm{n} \times \mathrm{n}$ matrices in R .
- $A=\left(\begin{array}{cc}-1 & 1 \\ 0 & 1\end{array}\right)$ has order $2, B=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ has order 2 , but $A B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has infinite order! Non-commutativity strikes.

5.5 Page 6-11

- isomorphism is a bjiection preserving group operations.
- Can think of it as a relabeling of the Cayley table.
- Example given is Klein-four and symmetries of tall serif letter "I", or of a diamond/nonsquare rhombus.
- \mathbb{Z}_{12} is isomorphic to rotational symmetries of a 12 -gon.
- Q_{8} is isomorphic under matrix multiplication to $\left\{ \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \pm\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right), \pm\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right.$, $\left.\pm\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)\right\} \subset G L_{2}(\mathbb{R})$
- D_{3} is isomorphic to S_{3} since any permutation is possible in D_{3} and no more.

6 Chapter 2.3: Subgroups

6.1 Page 1-3

- Subgroups are closure-bound subsets of groups.
- Easy test: $H \subset G$ if for every $h_{1}, h_{2} \in H, h_{1} h_{2} \in H$, and for any $h \in H, h^{-1} \in H$.

6.2 Page 4

- Cartesian product of groups G, H is also a group: $G \times H=(g, h) \cdot\left(g^{\prime}, h^{\prime}\right)=$ ($g g^{\prime}, h h^{\prime}$), $g \in G, h \in H$. Also called the direct product

6.3 Lagrange's theorem

Theorem: Order of every subgroup divides the containing group.
Lemma: If $H \subset G$. and $r, s \in G$ then $H r=H s \Longleftrightarrow r s^{-1} \in H$. Otherwise, $H r, H s$ have no element in common.
One direction: $r s^{-1} \in H \rightarrow H r=H s$

- $r s^{-1}=h \in H$ by supposition
- $H=H h=H r s^{-1}$
- $H r=H s$

Other direction: $H r=H s \rightarrow r s^{-1} \in H$

- $H r=H s$ by supposition
- $H r s^{-1}=H$, so $h_{1} r s^{-1}=h_{2}$ for some h_{1}, h_{2}.
- $r s^{-1}=h_{1}^{-1} h_{2} \in H$

Therefore, if Hr and Hs have some element in common, meaning $h_{1} r=h_{2} s$, then $r s^{-1}=$ $h_{1}^{-1} h_{2} \in H$. So, by the first direction above, $H r=H s$.
Lagrange construction of cosets:

- Take $r_{1} \in G$, so $H r_{1}=H$.
- If $H \neq G$, take $r_{2} \in G-H r_{1}$ to create $H r_{2}$.
- Repeat. We wiil thus create disjoint $H r_{1}, H r_{2}, \ldots$ of the same size.

6.4 My take on Lagrange

- If $t \in H r$ via $t=h_{1} r$ and $t \in H s$ via $t=h_{2} s$, then $r=h_{1}^{-1} h_{2} s \in H s$ and likewise for s, so $H r=H s$. So every element is in both or neither.
- Therefore $H(x)=H x$ is a partition relation on the elements of G.
- Size of $H r$ equals size of H for obvious group reasons.
- Every element g of G is in some coset Hg .
- Therefore G is partitioned into cosets of equal size, which is size of H .
- Therefore size of subgroup H divides size of group G

6.5 Page 7-12

- Note that if H and K are subgroups, so is $H \cap K$.
- \mathbb{Z}_{6} has subgroups $\mathbb{Z}_{6},\{0,2,4\},\{0,3\},\{0\}$, all divisors of 6 in this case.
- \mathbb{Z}_{p}, p prime, has only subgroups $\mathbb{Z}_{p}, 0$
- $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ has $\mathrm{p}+3$ subgroups
$-\mathbb{Z}_{p} \times \mathbb{Z}_{p}$
- Generator $(0,0)$
- Generator $(0,1)$
- All generators $(1, n), n \in[0, p-1]$. p of those.
- Another way to think about $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$: Outside of $(0,0)$, the remaining $p^{2}-1$ elements each have order p. Except the identity, they each generate a group of size p, though groups of $p-1$ of them are duplicates (the same group). generate a group of size p , minus the identity. So $\left(p^{2}-1\right) /(p-1)+2($ trivial subgroups $)=p+3$.
- Subgroup count of $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$: a counting exercise, based on generators.
- Look at all cyclic groups of each of the elements.
- $(0,0)$ generates 1 group
- Order 2: Three elements, which generate three distinct cyclic subgroups
- Order 4: Four elements, which generate two distinct subgroups
- Order 8: $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$, non-cyclic
- And there's one distict $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ group.
- Note: Is there a good (even recursive) formula for this?

7 Chapter 2.4: Abelian Groups

7.1 Page 1-3

- Theorem: $\mathbb{Z}_{a} \times \mathbb{Z}_{b}$ is isomorphic to $\mathbb{Z}_{a b}$ iff a and b are relatively prime.
- DF Proof: If a and b are relatively prime, $(1,1)$ is of order $a b$. If a and b share factor c, then $\mathbb{Z}_{a b}$ has an element x of order $a b$, but $\mathbb{Z}_{a} \times \mathbb{Z}_{b}$ will have cycled by the time $x^{a b / c}$ rolls around.
- So decompose e.g. \mathbb{Z}_{12} into $\mathbb{Z}_{4} \times \mathbb{Z}_{3}$, for example.

7.2 Page 4-6

- Theorem: Every finite abelian group is isomorphic to a direct product of cyclic groups. Note: This works because for Abelian groups, subgroups are all normal, so keep decomposing into normal complements $G \cong H \times K$
- Therefore, the number of these groups of order n is the product of the partitions of each of its prime factors' powers.
- Therefore, the number of abelian groups of size $\left(24=3 * 2^{3}\right)$ is $p(1) * p(3)=1 * 3=$ $3: \mathbb{Z}_{3} \times \mathbb{Z}_{8}, \mathbb{Z}_{3} \times \mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$
- Therefore, the number of abelian groups of size $2310=2 * 3 * 5 * 7 * 11$ is one.

7.3 Page 7-11: \mathbb{Z}_{n}^{*} or $U(n)$

- Group \mathbb{Z}_{n}^{*} : elements of \mathbb{Z}_{n} relatively prime to n , under multiplication.
- $\left|\mathbb{Z}_{n}^{*}\right|=\phi(n)$, the totient function.
- This is a group even if n not prime because there is $a x+b n=1$ if x, n are relatively prime.
- $\mathbb{Z}_{8}^{*}=\{1,3,5,7\}$ is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ since every element squared is 1 .
- $\mathbb{Z}_{10}^{*}=\{1,3,7,9\}$ is isomorphic to \mathbb{Z}_{4} since it is generated by 3 .
- $\mathbb{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$ is isomorphic to $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ by counting element orders.
- Note: Primitive roots of n are those that generate \mathbb{Z}_{n}^{*}. There are primitive roots mod n if and only if $n=1,2,4, p^{k}, 2 p^{k}$. TODO: Read the primitive roots proof.

8 Chapter 2.5: Homomorphisms

8.1 Page 1-6

- Homomorphism $\phi: \phi(a) *^{\prime} \phi(b)=\phi(a * b)$. Note that $*$ and $*^{\prime}$ are different operations.
- This means, "translate each via the function, then combine" yields the same result as "combine first, then translate". So structure is preserved.
- Note that if the domain and range are the same, this is like isomorphism, except homomorphism can squash some items to zero.
- Also, this range can be entirely different than the domain, e.g. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
- Easy to prove homomorphism preserves identities and inverses.
- Order of transformed element $\phi(g)$ divides order of g, since $g^{k}=e$ and $\phi(g)^{k}=\phi(e)$, but they're not identical: consider that $\phi(g)$ could hit e at some divisor of k - we could map everything to the identity and make that 1 !

8.2 Page 7- 10: Counting homomorphisms

TODO Start here

- Main idea: Knowing where we send identity determines entire homomorphism for a cyclic group.
- Homomorphism count for $\mathbb{Z}_{4} \rightarrow \mathbb{Z}_{10}$: There are 10 places to send identity, but recall that $\phi(1)$ has to have order 4 since $\phi(1+1+1+1)=\phi(0)=0$. Therefore, $\phi(1)$ has to be 0 or 5 . So 2 possibilities.
- Homomorphism count for $\mathbb{Z}_{99} \rightarrow \mathbb{Z}_{100}$: Since $\phi(99)=0$ and $\phi(1) \times 100=0$, and order of $\phi(1)$ must divide both, only one possibility: $\phi(1)=1$,.
- Homomorphism count for $\mathbb{Z}_{99} \rightarrow \mathbb{Z}_{99}: 99$, since $99 \cdot \phi(1)=0$, so $\phi(1)$ can go anywhere.
- Homomorphism count for $D_{3} \rightarrow \mathbb{Z}_{3}: 1$, since D_{3} has 3 elements of order 2,2 of order 3,1 of order 1 . Only mapping everything to 0 works.

8.3 Page 11: Counting automorphisms

- Automorphism is isomorphism from group to itself.
- Count of automorphisms of \mathbb{Z}_{8} : If 1 maps to an order-8 element, we're isomorphic. There are four: $1,3,5,7$
- $\operatorname{Aut}\left(\mathbb{Z}_{8}\right)$ is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, since $\phi_{3}(1)^{2}=\phi_{5}(1)^{2}=\phi_{7}(1)^{2}=1$, where ϕ_{a} maps a to 1 . Three elements of order 2 means it's the Klein 4 group.
- Count of automorphisms (meaning, we need all the elements in the codomain) of $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$: Think of $\phi((1,0,0)), \phi((0,1,0)), \phi((0,0,1))$ as the basis for the group. There are seven choices for the first, six for the next, and four for the third.
- The above group is $\left(\phi\left(e_{1}\right)\left|\phi\left(e_{2}\right)\right| \phi\left(e_{3}\right)\right)=G L\left(\mathbb{F}_{2}\right)$, invertible matrices of 3 x 3 .

9 Chapter 2.6: Quotient Groups

9.1 Aside: Complex multiplication

- Complex modulus (size) of $a+b i$ is defined as $\operatorname{root}\left(a^{2}+b^{2}\right)$
- Complex multiplication: Angles add, moduli multiply
- One proof of moduli: $(a+b i)(c+d i)=(a c-b d)+(a d+b c) i$ and $\sqrt{a^{2}+b^{2}} \sqrt{c^{2}+d^{2}}=$ $\sqrt{a^{2} c^{2}+b^{2} d^{2}-2 a b c d+a d^{2}+b c^{2}+2 a d b c}$
- One proof of angles: Convert to $r_{1}(\cos (a)+\sin (a)) r_{2}(\cos (b)+\sin (b))$ and multiply
- More visual proof: Think of $c_{1}(a+b i)=c_{1} a+i\left(c_{1} b\right)$. a scales original vector, and $b i$ rotates by 90 degrees and scales.

9.2 Page 1-6

- S^{1}, is defined as the group of complex numbers with modulus 1 .
- The coset $z S^{1}$ is any complex number multiplied by S^{1}, which is a circle about the origin. $z=2$ and $z=2 i$ would be in the same coset. These cosets are members of \mathbb{C}^{*} with the same modulus (length).
- These are disjoint cosets that fill out \mathbb{C}^{*} (don't include the zero, since no inverse).
- If you consider $H=x+i y, x>0, y=0$ (positive reals) then the cosets are rays from the origin. Any $z H$ is just the different sizes of that (say, unit) vector. These cosets are members of \mathbb{C}^{*} with the same angle.
- quotient group of \mathbb{C}^{*} by $S^{1}: \mathbb{C} / S^{1}$
- Members are cosets
- Multiplying is defined as $a H \times b H=a b H, H \in S^{1}, a, b \in \mathbb{C}^{*}$
$-S^{1}$ is therefore the identity.
- This group is isomorphic to R^{+}under multiplication (or really, like H).
- "A ray of angle A and a ray of angle B multiply to a ray of angle $A B$, forget about the size".
- This is like collapsing out the divisor, in this case, S^{1}.
- size $|G / H|=|G| /|H|$ since cosets are equally sized.
- Gotcha: Only works (meaning, $g_{1}, g_{1}^{\prime} \in C_{1}, g_{2}, g_{2}^{\prime} \in C_{2}$ implies $g_{1} g_{2}$ in same coset as $g_{1}^{\prime} g_{2}^{\prime}$) if H is normal in G.
- Note: Normal means $x H=H x$, so that makes sense that $g_{1} C g_{2} C=g_{1} g_{2} C * C=$ $g_{1} g_{2} C$
- So \mathbb{C}^{*} / H is all the rays with the same modulus, or S^{1}.
- "A ray of size X and a ray of size Y multuply to a ray of size XY , and forget about the angles".
- So $\mathbb{C}^{*} / S^{1}=H$ and $\mathbb{C}^{*} / H=S^{1}$!

9.3 Page 7-12

- Another example: $\mathbb{Z} / 10 \mathbb{Z}=\mathbb{Z}_{10}$ under addition. Forget about the non-unit digits!
- Another example: \mathbb{Q} / \mathbb{Z} is $\bar{q}=q+\mathbb{Z}$, so $\overline{1 / 2}+\overline{2 / 3}=\overline{1 / 6}$
- Another example: if N is the center (omni-commuter subgroup) of D_{4}, then N is two elements I, R_{180}. Forgetting about those we have cosets $\left(I, R_{180}\right) N,\left(R_{90}, R_{270}\right) N,\left(D_{1}, D_{2}\right) N,(V, H) N$. All non-identity are degree 2 , so isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
- Another example: \mathbb{Z}_{13}^{*} with multiplication $\bmod 13 . N=1,12$ is a normal subgroup. \mathbb{Z}_{13}^{*} / N is "forget about the $+/-1$ of it and think of these as 1 through 6 .
- Another example: commutator subgroup $[\mathrm{a}, \mathrm{b}]$ is generated by all $a b a^{-1} b^{-1}$ for all $a, b \in G$. (Note: group members are products of these guys, not necessarily all of that form.) This is just e for an Abelian group. Its size measures "how far" the group is from being Abelian.
- Main idea of quotients: "what do we force to the identity?" If we say every $\overline{a b a^{-1} b^{-1}}=\overline{1}$, then you can multiply by $b a$ to get $\overline{a b}=\overline{b a}$. So $G /[G, G]$ is necessarily Abelian.

10 Chapter 3.1: Number Theory

10.1 Page 1-7

- A Fermat's little theorem proof
- Take prime p, and a not divisible by p.
$-\{a, 2 a, 3 a \ldots,(p-1) a\}=\{1,2,3, \ldots(p-1)\} \bmod p$ after rearrangement since they're the same elements mod p .
- Take the product of each: $a^{p-1}(p-1)!\equiv(p-1)!\bmod p$
- Divide $(p-1)$! out (there's an inverse $\bmod \mathrm{p}$) and you get $a^{p-1} \equiv 1 \bmod \mathrm{p}$
- Another: Since the order of a in \mathbb{Z}_{p}^{*} is $p-1, a^{p-1} \equiv 1 \bmod \mathrm{p}$.
- Note: Generalization of Fermat's little theorem using same group argument: $a^{\phi(n)} \equiv$ 1 if a and n relatively prime, since $\phi(n)$ is the order of the group \mathbb{Z}_{n}, and every element to the power of the group order is 1 .

10.2 Page 8-11

- Wilson's theorem: $1 * 2 * \ldots *(p-1) \equiv-1 \bmod p$.
- One proof: These all have inverses, except 1 and $-1 \bmod p$, which are self-inverting ($x^{2}=1$ solutions).
- This also proves that the product of all elements of a finite Abelian group which has a single element g of order 2 is that element, g.
- The powers of a primitive root of \mathbf{p} yield all elements $a \bmod p$. So \mathbb{Z}_{p}^{*} is cyclical for any prime p.
- One more proof: if k relatively prime to $\mathrm{p}-1$, where p a prime >2, then $1^{k}+2^{k}+\ldots+$ $(p-1)^{k} \equiv 0 \bmod p$, since each of these summands is a different member of the group: ($a^{k}=b^{k}, k<p \rightarrow a=k \bmod p$, after looking at the binomial elements) summing to $\frac{p(p-1)}{2}$

11 Chapter 3.2: Games

11.115 puzzle

You can't keep 1-13 fixed, blank (16) in the lower right corner, and swap 14 and 15.
Their proof: Think of this as a series of swaps with $(j, 16), 16$ being the blank tile. To return to the bottom right corner, 16 must make an even number of moves. So only even permutations allowed. So $(14,15)$ is not a viable swap, nor any of the odd permutations.

12 Chapter 3.3: Peg solitaire

- Consider Klein four group: $x y=y x=z, y z=z y=x, x z=z x=y$.
- Label all pegs such that three consecutive in any direction on the board are always, in some order: $\mathrm{x}, \mathrm{y}, \mathrm{z}$
- Invariant: product of all occupied spaces. If x jumps over y to get to z , eliminating jumped peg, $x y=z$.
- 11 x's, 11 z's, 10 y's yield $\mathrm{xz}=\mathrm{y}$ as the total board product, an invariant.

13 Chapter 3.4: Rubix's Cube

- Each element is the state $\left(S_{12}, S_{8},\left(\mathbb{Z}_{2}\right)^{12},\left(\mathbb{Z}_{3}\right)^{8}\right)$, representing around a fixed set of centers: (middle selections, corner selections, middle orientation, corner orientation). Each permutation is basically what you swap from starting state.
- Invariant: First and second terms of the 4-tuple for all F,B,D,U,L,R are odd, so first two args need same permutation parity
- Invariant: (Not proven here): Sum of edge orientations (0,1) is zero, sum of corner orientations $(0,1,2)$ is zero.
- Commutator: $g h g^{-1} h^{-1}$ measure how entangled g and h are. If they're commutatitive, it is e.
- For Rubix's cube, commutators $g h g^{-1} h^{-1}$ are great for only moving pieces where effects of g and h overlap.
- g and h are conjugates if some x such that $h=x^{-1} g x$. "h is same as g , just in a different location".
- Conjugate interpretation: "h is move via x , operate with g , move back via x . "
- For Rubix's cube - you can use conjugates to make whatever change to a different part of the cube (move it to the operating table, operate, move it back).

14 Chapter 4.1: Normal Subgroups

14.1 Normal definition

- Normal subgroup intuition: Every conjugacy $g^{-1} H g$ moves a group to another subgroup. Normal subgroups $g^{-1} N g=N$ are the ones that don't move when you conjugate them.
- Example of non-normal: Any one of the n sets of S_{n-1} among conjugates of S_{n}. Move it, mess with it, move it back - it's broken free by then.
- Normal definition: Group N is normal if and only if (all equivalent):
$-g N=N g$ for all $g \in G$
$-g N g^{-1}=N$ for all $g \in G$ (equiv to above)
$-g n g^{-1} \in N$ for all $g \in G$
- Theorem: Any subgroup of index 2 is normal. Proof: G has two distinct cosets N, $g N$, but also N and $N g$ so $g N=N g$.
- Normal doesn't recursively nest.
- H can be normal in G (e.g. $\left(I, R_{180}, F_{v}, F_{h}\right)$ in D_{4}, K can be normal in H (e.g. I, V, but K is not normal in $G: V R_{90}=D_{u l}, R_{90} V=D_{u r}$
- Normal examples in $G L_{2}(\mathbb{C}): S L_{2}(\mathbb{C})$ (determinant 1) and non-zero diags $z I_{2}$.
- Non-normal examples in $G L_{2}(\mathbb{C}): G L_{2}(\mathbb{R})$. Non-zero diags with different entries. Easy to throw some arbitrary ones in Wolfram Alpha and see everything messed up after conjugation.
- G's Center: $Z(G)$ are the omni-commuters. Always normal.
- G's Commutator group $[G, G]$: Product of any $a b a^{-1} b^{-1}$ for $a, b \in G$. is normal, since $g[a, b] g^{-1}=\left[g a g^{-1}, g b g^{-1}\right]$, and this can be extended inductively over the constituents.

14.2 Normal properties and examples

- S_{3} has three normal subgroups: two trivial ones, and ([], [123], [321]) since it's of index 2.
- Q_{8} has four non-trivial subgroups, all normal: those generated by i, j, or k are all of order 4, index 2. -1 also generates an order 2 group, but it's the center.
- Definition: Product $H K=h k: h \in H, k \in K$.
- Property: If $H \cap K=\{1\}$, and H, K are finite, $|H K|=|H| \cdot|K|$. Why? $h_{1} k_{1}=$ $h_{2} k_{2} \Longrightarrow h_{2}^{-1} h_{1}=k_{1}^{-1} k_{2}$, proving they're both e since left is in H, right in K.
- Property : If H, K subgruops of G , then $H K$ is a subgroup too if H or K is normal, otherwise not always. Why?
- Assume H is normal.
- Identity: $e_{h} e_{k}=e$ is in there.
- Inverse: If $h k \in H K$, then $k^{-1} h^{-1}=k^{-1} h^{-1} k^{1} * k^{-1}$ is in H, K due to H's normality.
- Closure: $h_{1} k_{1} * h_{2} k_{2}=h_{1} k_{1} h_{2}\left(k_{1}^{-1} k_{1}\right) k_{2}=h_{1}\left(k_{1} h_{2} k_{1}^{-1}\right) k_{1} k_{2}=h_{1} h_{3} * k_{1} k_{2}$ for some h_{3}
- Property: If H, K are normal subgroups of G, $H K$ is normal. Why? More tricks. $g h k g^{-1}=g h\left(g^{-1} g\right) k g^{-1}=\left(g h g^{-1}\right)\left(g k g^{-1}\right)=h^{\prime} k^{\prime}$ for some other $h^{\prime} \in H, k^{\prime} \in K$. If they're not both normal, no guarantee about $H K$ (e.g. take $H=\{1\}, G$ a non-normal subgroup).
- Centralizer of G's subgroup H is a subgroup of G which commutes with all H : $C_{G}(H)=\{g \in G: g h=h g$ for all $h \in H\}$. This is G if and only if G is Abelian (almost definitional). May not contain H .
- Normalizer of G's subgroup H is a subgroup of G which makes H normal: $N_{G}(H)=$ $\{g \in G: g H=H g\}$. This is G if and only if H is normal in G (almost definitional). Largest subgroup of G where H is normal. Definitely contains H .
- Centralizer is a normal subgroup of normalizer with two different proofs:
- With $n \in N_{G}(H), c \in C_{G}(s)$, show that $n c n^{-1}$ commutes with members of H , so it's in C_{G}, therefore normal. $h n$ is some $n h^{\prime}$, and same for n^{-1}, so $n c n^{-1} h=$ $n c h^{\prime} n^{-1}=n h^{\prime} c n^{-1}=h n c n^{-1}$ so $n c n^{-1}$ passed through h , is therefore in the centralizer $\left(n c n^{\prime} \in C_{G}(s)\right)$, and so $C_{G}(H)$ is normal.
- Using First isomorphism theorem (later):
* $N_{G}(H)$ is the big "dividend" group, $C_{G}(H)$ is the "divisor", and Aut(H) the "quotient" (codomain of the homomorphism)
* The homomorphism $\phi: N_{G}(H) \rightarrow \operatorname{Aut}(H)$ is $g \rightarrow \phi_{g}(x)=g x g^{-1}$.
* The kernel of this homomorphism is that which maps to $I \in \operatorname{Aut}(H)$.
* The kernel is the centralizer, since $\phi_{c}(x)=c x c^{-1}=c c^{-1} x=x$, identity.
* Therefore, $N_{G}(H) / \operatorname{Ker}(\phi)=N_{G}(H) / C_{G}(H) \rightarrow \operatorname{Aut}(H)$. so $C_{G}(H)$ must be normal!
* (Kernels of homomorphisms always normal (DSF Proof): If $\phi: G \rightarrow H$ is a homormophism, and $g \in G, k \in \operatorname{Ker}(\phi)$, then $g k g^{-1} \in K$ since $\phi\left(g k g^{-1}\right)=$ $\phi(g) \phi(k) \phi\left(g^{-1}\right)=\phi(g) \phi\left(g^{-1}\right)=\phi(g) \phi(g)^{-1}=e$. So K is normal in G.

15 Chapter 4.2: Isomorphism theorems

- Example of intuitive isomorphism: $M_{2}(\mathbb{Z}) / N \cong\left(\mathbb{Z}_{2}\right)^{4}$, where N is the subgroup with even entries. How? Can either list all cosets or construct a homomorphism $\left.\phi\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=(a \bmod 2, b \bmod 2, c \bmod 2, d \bmod 2)\right)$.

15.1 First Isomorphism Theorem and example

- $G=G L_{2}(\mathbb{R})$, invertible 2×2 real matrices
- $N=S L_{2}(\mathbb{R})$ is subgroup of G with determinant 1 .
$-\varphi$ is det, since $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
$-G / N \cong \mathbb{R}^{*}$ intuitively, since for any matrix, you can divide by the determinant scalar, and find the representative in the group N . Can think of N as the kernel of the homomorphism - it doesn't matter, it's mapped to identitty.
- First isomorphism theorem: given surjective homomorphism $\varphi: G \mapsto H$ with kernel $\operatorname{Ker}(\varphi)=\left\{g \in G \mid \varphi(g)=e_{H}\right\}$, then $G / \operatorname{Ker}(\varphi) \cong H$.
- Note: This directly implies $G=H \times K \leftrightarrow G / K=H$, with the isomorphism $\phi:(h, k) \rightarrow H$. The kernel $\operatorname{Ker}(\phi)=(0, k) \cong K$, so $G / \operatorname{Ker}(\phi)=G / K=H$
- Another example in the above, if $a=\left(\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right), b=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$, then $(a N)(b N)$ is some $c N$, where $\operatorname{det}(c)=4$, like $2 I$

15.2 Third Isomorphism theorem

- Theorem: If G / N is abelian, then every subgroup H of G containing N is normal in G.
- $H / N \subset G / N$, and so H / N is abelian too.
- Abelian means $g h N=h g N$
- This also shows there is some n such that $g h=h g n$.
- But since N is normal in G, $g n=n^{\prime} g \rightarrow h g n=\left(h n^{\prime}\right) g$, and $h n^{\prime} \in H$, therefore $g h=\left(h n^{\prime}\right) g$, and H is normal in G.
- Actual theorem says subgroups of G containing N correspond to subgroups of G / N.
- Also, $\frac{G / N}{H / N} \cong \frac{G}{H}$

15.3 Second Isomorphism theorem

- Actual theorem says: if H is a subgroup of G, and N is a normal subgroup of G, then $\frac{H}{H \cap N} \cong \frac{H N}{N}$
- In particular, if $H \cap N=\{1\}$, then $\frac{H N}{N} \cong H$.
- Proof:
- HN contains both H and N (since identity in both), and N is normal in H $\left(h n h^{-1} \in N\right)$ since it is normal in G $(h \in G)$.
- Therefore $(H N) / N$ is a group.
- $\varphi(h)=h N$ is a surjective homomorphism to $(H N) / N$
- The kernel is anything in N , which would be $H \cap N$.
- Result follows from first isomorphism theorem.

15.4 Examples using the first isomorphism theorem

- Typically, in order to identify $G / N \cong K$, find the surjective homomorphism $G \rightarrow K$ where $\operatorname{Ker}(\varphi)=N$.
- Example: $G=\mathbb{Z} \times \mathbb{Z}$ with addition, $\mathrm{N}=$ group generated by $(1,0) . G / N \cong \mathbb{Z}$ intuitively, since you're forgetting the first coordinate. To make it formal : $\varphi((x, y)=$ $y)$.
- Harder example: $G=\mathbb{Z} \times \mathbb{Z}$ with addition, $\mathrm{H}=$ group generated by $(2,3)$, or $(2 a, 3 a)$. $G / H \cong Z$, actually, since $\phi((x, y)=3 x-2 y)$ is surjective (think of $\phi((a, a))=a$ and its kernel is H .
- Harder example: $G=\mathbb{Z} \times \mathbb{Z}$ with addition, $\mathrm{H}=$ group generated by $(2,4)$, or $(2 a, 4 a)$. $G / H \cong Z \times \mathbb{Z}_{2}$, actually, since $\phi((x, y)=2 x-y, x(\bmod 2))$ is surjective and its kernel is H .
- TODO: Get a better intuition here. Is this group like, how far away from this null space line am I?

16 4.3a: Interlude: Group actions

16.1 Group Actions

Reference: https://brilliant.org/wiki/group-actions
Think of group actions like S_{n} acting on the set (not necessarily group) of $\{1,2, \ldots n\}$.

- group action on group G, set X, is function $f: G \times X \rightarrow X$. It's often written $f(g, x)=g \cdot x$. which has some groupy properties.
$-f\left(e_{G}, x\right)=x$ for all $x \in X$, or $e_{G} \cdot x=x$
$-f(g, f(h, x))=f(g h, x)$ for all $x \in X$,or $g \cdot(h \cdot x)=(g h) \cdot x$.
- Canonical Example: if G is S_{n}, and $X=\{1,2, \ldots n\}$.
- fixed point of a group element $g \in G$ is $x \in X$ such that $g \cdot x=x$. So, $f=g(x)$ is the (very straightforward) mapping, g is the function, and x would be a point that doesn't change.
- For point x, stabilizer of the point is called G_{x}, and is the set of $g \in G$ that map x as a fixed point: $g(x)=x$ of element $g \in G$ is $x \in X$ such that $g \cdot x=x$. So, it's the subgroup of elements that each act stably on x.
- fixed point of element $g \in G$ is $x \in X$ such that $g \cdot x=x$. So, $f=g(x)$ is the (very straightforwardx) mapping, g is the function, and x would be a point that doesn't chagne.
- orbit of element $x \in X$ is how far x reaches, the set of $y \in X$ such that there's a $g \cdot x=y$.
- Example: So if $G=\mathbb{Z}_{2}=e, g, X=\mathbb{Z}$, and the action is $e \cdot x=x, g \cdot x=-x$, then
- Fixed points of e are all of them, of g is 0 .
- Stabilizers of x are e for all, e, g for 0 .
- Orbit of 0 is $\{0\}$, orbit of every other n is $\{n,-n\}$
- orbits are an equivalency relation! So they partition X.
- Action is transitive if there is only one orbit in the relation (sounds like a regular group): for any $x, y \in X$, there is a g such that $g \cdot x=y$.
- Action is faithful If only e_{G} if the only omni-stabilizer element is e_{G}. Intersection of all G_{x} is e_{G}.
- Another way to think about faithful: Think of G as a homomorophism to $\operatorname{Sym}(X)$, permutations of the group. Faithful actions are injective / have a trivial kernel.
- Examples of actions
- Every group acts on itself by left multiplication. It is transitive and faithful (since the Cayley table is a latin square). One orbit.
- Every group acts on itself by conjugation $g \cdot x=g x g^{-1}$. Orbits are the conjugacy classes. The centralizer $C_{G}(x)$ is the stabilizer of x.
- If H is a subgroup of G, then cosets G / H and left multiplication are a group action. They are a transitive action since there is one orbit: you can always get from $g H$ to $k H$ by $\left(k g^{-1}\right) H$.
- Core Group: The group $\bigcap_{g \in G} g H g^{-1}$ of G's subgroup H is the largest normal subgroup of H. Proof:
* It's contained in H since $h H h^{-1} \in H$, and it's an intersection.
* It's normal because $k \operatorname{Core}_{G}(H) k^{-1}=k\left(\bigcap_{g \in G} g H^{-1}\right) k^{-1}=\bigcap_{g \in G} k g H g^{-1} k^{-1}=$ $\operatorname{Core}_{G}(H)$ since every $k g$ is just a g but permuted.
* It's the largest normal one since if there were another normal subgroup $N^{\prime} \in H$, then $g n^{\prime} g^{-1} \in N^{\prime}$ and $g n^{\prime} g^{-1}=h$ for some $h \in H$, so $n^{\prime}=g^{-1} h g$, and therefore n^{\prime} is somewhere in the core group.
* Therefore, the core group is the kernel of the map $G \rightarrow \operatorname{Sym}(G / H)$, since those map to H. So if H doesn't contain any nontrivial normal subgroups, it's faithful, and is called simple
- Another group action: $P G L_{2}(\mathbb{C})=$ projective linear group of 2×2 matrices on the complex plane (plus infinity), sending $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot z=\frac{a z+b}{c z+d}$.
- Orbit stabilizer theorem: If G is finite, and $x \in G$ has a stabilizer G_{x} and orbit $\operatorname{orb}(\mathrm{x})$, then $|G|=\left|G_{x}\right||\operatorname{orb}(x)|$. Proof:
- Since stabilizer is a subgroup, the count of distinct cosets (index) times the subgroup is the size by Lagrange.
- Consider homomorphism $G / G_{x} \rightarrow \operatorname{orb}(x): \phi\left(g G_{x}\right)=g \cdot x$
- And the set $a G_{x}$ and $b G_{x}$ are equal under ϕ iff $a(x)=b(x)$, since $b^{-1} a G_{x}=G_{x}$, implying $b^{-1} a \in G_{x} \rightarrow b^{-1} a(x)=x \rightarrow a(x)=b(x)$. So the stabilizer takes care of the injective part.
- Also, this map is onto since every element $y \in \operatorname{orb}(x)$, meaning some $g \cdot x=y$ is in that $g G_{x}$. So the orbits take care of the surjective part.
- Example: symmetric group: $S_{n}: G_{x} \cong S_{n-1}$! $\rightarrow\left|G_{x}\right|=(n-1)$!. orb $(x)=n$. So $|G|=n!$.
- Example: cube symmetries: Vertex is x, rotation of adjacent vertices is G_{x}. $\left|G_{x}\right|\left|O_{x}\right|=3 * 8=24$. Can also do with edges and faces. Turns out cube symmetries $\cong S_{4}$

17 Aside: Conjugacy classes

17.1 Conjugacy classes defined

- Note: It's easy to take a group to another group by conjugation group action $\phi(g, H)$: $g h g^{-1}$. Though the whole group gets mapped to another group, the elements inside get mapped to conjugacy classes.
- To get the conjugacy class that h is in by hand, compute $g h g^{-1}, g \in G$. You'll find all its co-members. Repeat.
- Within group G, elements h , h ' in conjugacy class H have some $g \in G$ such that $h^{\prime}=g h g^{-1}$ (and therefore, $g^{-1} h^{\prime} g=h$). So, it's an equivalence relation, thus a partition.
- Note: if the group G is abelian, $h^{\prime}=g h g^{-1} \rightarrow g g^{-1} h=h$, so all conjugacy classes there are of size one $\left(g h g^{-1}=g g^{-1} h=h\right)$
- Each one of these classes corresponds to the orbit of that element h under conjugation.
- Why useful? They can be used to show structure (and thus classify, look at isomorphisms, etc.) of groups.
- Example: In $G L_{n}(\mathbb{R}), A=P B P^{-1}$ is matrix similarity. B represents A under a change of bases.
- Example: In S_{3}, there are three conjugacy classes: $\{()\},\{(a b c),(b a c)\},\{(a b),(b c),(a c)\}$. Easy to think about with permutations - this is just relabeling the members going in, doing the permutation, then reversing the labels.
- Example: $\mathbb{Z} / 5 \mathbb{Z}=\mathbb{Z}_{5}$ which is Abelian, so 5 classes (one for each element).

17.2 A_{5} example and the class equation

- Examples: In A_{5}, types are repped by ()$,(12)(34),(12)(23)=(123)$, and $(12)(23)(34)(45)=$ (12345).
- Gotcha: Note that There are $5!/ 5=245$-cycles, and that subgroup order has to divide 60 , so there must be two conjugacy classes of 5 -cycles. Makes sense that (12345) and (21345) can't be same class, since there's nowhere to "stash" during the relabeling.
- Theorem: Sum of conjugacy class orbits is size of group, or, for arbitrary class reps $g_{1} \ldots g_{k},|G|=\sum_{i=1}^{k}\left[G: C_{G}\left(g_{i}\right)\right]$. Note that $|Z(G)|$ is all of the reps and classes of size one. Why does this work? Orbit-stabilizer says that $C_{G}\left(g_{i}\right)$ is the stabilizer, and the conjugacy classes form a partition.
- Class Equation: Just writing down the size of the equivalence classes. In A_{5}, this would be $60=1+15+20+12+12$ (second set of 5 -cycles).
- Note that any normal subgroup in A_{5} has to be union of those since conjugation by A_{5} elements maps to the whole conjugacy class. BUT - there are no sums that divide 60. So A_{5} has no normal subgroups, so it is simple!

18 4.3 Conjugacy class section

- Reminder of orbit-stabilizer theorem: Number of conjugates of g is the index (more generally, orbit, here under conjugation group action) of the centralizer (more generally, stabilizer, here under conjugation group action) of g. This reminds me: for elements h commutes with, conjugation preserves $h: g h g^{-1}=h \leftrightarrow g h=h g$.
- Example: If $|G|=60, g \neq 1, g^{5}=1$ then size of conjugacy class is at most 12 since at least $e, g, g^{2}, g^{3}, g^{4}$ are in its centralizer $C_{g}(G)$.
- Example: Class equation of Q_{8} :
$-\{1\}$ commute with everything $=8 / 8=$ orbit of 1 under $g * 1 * g^{-1}$
$-\{-1\}$ commutes with everything $=8 / 8=$ orbit of 1 under $g *-1 * g^{-1}$
$-i$ commutes with $1,-1, i,-i=8 / 4=$ orbit of 2 under $g * i * g^{-1}$, which is $\{i,-i\}$. Similar for j, k.
- Thus, $8=1+1+2+2+2$.
- Example: Class equation of D_{5}, with σ as a clockwise rotation, τ as a flip:
$-\{e\}$ commutes with everything $=10 / 10=1$
$-\{\sigma\}$ commutes with only rotations $=10 / 5=2$, and conjugates to $\tau \sigma \tau=\sigma^{4}$.
$-\left\{\sigma^{2}\right\}$ commutes only with rotations $=10 / 5=2$, and conjugates to $\tau \sigma^{2} \tau=\sigma^{3}$.
- $\{\tau\}$ commutes only with $\tau, e \mathrm{~m}$ and conjugates to all five flipped actions $\sigma^{k} \tau$.
- Thus, $10=1+2+2+5$
- Weird gotcha: Note that the abelian \mathbb{Z}_{5} has 5 conjugacy classes, and D_{5} has four, and there's an injective homomorphism $z \rightarrow \sigma^{z}$. So even though \mathbb{Z}_{5} is a subgroup of D_{5}, it has more conjugacy classes.
- D_{n} has n reflections. If n is odd, there is only one conjugacy class of reflections, since $\left(\sigma^{i} \tau\right) \tau=\sigma^{i}$ and $\left(\tau \sigma^{i}\right) \tau=\tau \tau \sigma^{-i}$, so if the paranthesized items are equal (i.e. if σ^{i} commutes with τ), then $\sigma^{i}=\sigma^{-i} . i=0$ works, but only in even groups does $i=\frac{n}{2}$ work. Therefore centralizer has size 2 for n odd, 4 for n even, and for these $\mathrm{n} / 2$ elements, there is one conjugacy class if n odd, 2 if even.
- Theorem: If there's a homomorphism $\pi: G \rightarrow K$, then count of conjugacy classes $c(G) \geq c(K)$. Homomorphism maps conjugacy classes to conjugacy classes $\phi\left(g h g^{-1}\right)=$ $\phi(g) \phi(h) \phi(g)^{-1}$, so if there's a nonzero kernel with k in it, $\pi(1)=\pi(k)$, but 1 and k could be different conjugacy classes in the domain.

19 4.4 Permutations / Symmetric group

- Note: Every group of size n is a subgroup of S_{n}, since element g induces a permutation on the elements by multiplication. I suppose then the group is the permutations of each g ! Repping under S_{n} is called the regular representation.
- Conjugation is interesting in S_{n}; If $\sigma=(123), \alpha=(13524)$, then $\sigma(13524) \sigma^{-1}=$ $(\sigma(1)(\sigma(3) \sigma(5) \sigma(2) \sigma(4))$. Why? (Proof)
- Say $\alpha=\left(a_{1} a_{2} \ldots a_{n}\right)$
$-\sigma^{-1} \sigma a_{1}=a_{1}$
$-\alpha\left(a_{i}\right)=\left(a_{i+1 \text { modn }}\right)$
- So for any $a_{i}, \sigma \alpha \sigma^{-1}\left(\sigma\left(a_{i}\right)\right)=\sigma\left(a_{i+1 \text { modk }}\right)$
- So the $\sigma \alpha \sigma^{-1}$ operation on $\sigma\left(a_{i}\right)$ is just like taking $\sigma\left(a_{i}\right)$ and mapping it to the next $\sigma\left(a_{i+1 \text { modk }}\right)$.
- S_{6} has 11 conjugacy classes corresponding to partitions: ()$,(12),(123),(12)(34),(1234),(12345),(123)(45)$ Think of missing elements \mathbf{x}, \mathbf{y}, like $(x)(y) \ldots$.
- How many permutations fix 1 in S_{n} ? Clearly this is just $\left|S_{n-1}\right|=(n-1)$!
- Summing total fixed counts $\sum_{\sigma \in S_{n}} F(\sigma)$ of every permutation is then $n *(n-1)$! $=n$!
- Random note: $A_{4} \not \neq D_{6}$ since A_{4} since there's an element of order 6 in D_{6}, none in A_{4}.
- Tetrahedon rotations group: Isomorphic to A_{4}. all rotations of form (1)(234) = $(23)(34),(2)(13)(34)$, etc. Four places to map a vertex, and three spin locations $=$ order 12 (or orbit-stablizer: three rotations in vertex centralizer, four places to go with vertex in orbit).

20 Aside: Legendre symbol

https://brilliant.org/wiki/legendre-symbol/

- a is a quadratic residue $\bmod m$ if $x^{2} \equiv a \bmod m$ has at least one x solution. So, I suppose that 1 is always a quadratic residue. a and m need to be coprime.
- If p is an odd prime, a is an integer, Legendre symbol $\left(\frac{a}{p}\right)$ is:
-0 if $a \equiv 0 \bmod \mathrm{p}$
-1 if a is a quadratic residue $\bmod \mathrm{p}$ and $a \neq 0 \bmod p$.
- Sum of quadratic resides of a prime is 0 . Why? There are no 0 's, and every residue is repped twice, once by a and once by $p-a$. So half are non-residues, half are double-residues. Why do they pair this way? $a^{2} \equiv b^{2} \bmod p \Rightarrow a^{2}-b^{2} \equiv 0 \bmod$ $p \Rightarrow(a-b)(a+b) \equiv 0 \bmod p \Rightarrow p \mid(a-b)(a+b) \Rightarrow a+b \equiv 0$ or $a-b \equiv 0$. So $a=b$ or $a+b=p$
- Property: Euler's criterion: If p is an odd prime, a is not divisible by p, then $a^{\frac{p-1}{2}}=\left(\frac{a}{p}\right)(\bmod p)$. This follows from: (1) If $a=x^{2}$, then $x^{p-1} \bmod p \equiv 1$ by Fermat's Little Thereom, so take square root. (2) If not, then because \mathbb{Z}_{p} is a group, every element x has a pal $x^{-1} a$ that multiplies to a. Product of these is $a^{\frac{p-1}{2}}=(p-1)!=-1$ by Wilson's Theorem.
- Property: If $a \equiv b(\bmod p),\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$. Just reduce $\bmod \mathrm{p}$.
- Property $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$. Follows from Euler's criterion ands exponents.
- Property: $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$, by Euler's criterion, so it is 1 iff $p \equiv 1 \bmod 4$.
- Property: $\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}$, by TODO something called quadratic reciprocity.
- Property: If p, q distinct odd primes, then $\left(\frac{q}{p}\right)\left(\frac{p}{q}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}$, by TODO something called quadratic reciprocity.

21 4.5 Signs of Permutations

- Note: Look at cycle structure of $\sigma_{3}(x)=3 x \bmod 11.3^{5}=1$, and $2 * 3^{5}=2$. Observe these two disjoint 5 -cycles.
- If $a^{k}=1 \bmod p$ and is the smallest k to do so, cycle structure of $\sigma_{a}(x)=a x \bmod$ p is all disjoint k-cycles. Proof: (1) σ_{a} will have no fixed points, as $a x=x$ means $a=1(\bmod p)$. (2) $\sigma_{a^{k}}=\sigma_{a}^{k}=$ identity. And (3) if $j<k, j$ can't be identity. So σ_{a} is the product of $\frac{p-1}{k}$ disjoint k-cycles.
- Also implies that σ_{a} is odd if and only if k is an even number (thus odd cycle) and $\frac{p-1}{k}$ is odd.
- Theorem: $\left(\frac{a}{p}\right)=-1$ iff k is even, and $\frac{p-1}{k}$ is odd, or $\operatorname{sgn}\left(\sigma_{a}\right)=\left(\frac{a}{p}\right)$. Why? Suppose for some a, the primitive root g taken to x is $a: g^{x}=a$. The order of g^{x} is
$\frac{p-1}{\operatorname{gcd}(p-1, x)}$. Then flip the denoms: $\frac{p-1}{k}=\operatorname{gcd}(p-1, x)$, which is odd iff x is odd, or NOT A SQUARE. Therrefore, $\operatorname{sgn}\left(\sigma_{a}\right)=\left(\frac{a}{p}\right)$!
- An inverison in a permutation is where a pair $a<b, \sigma(a)>\sigma(b)$.
- Number of inversions in σ_{2} is straightforward, as for prime $\mathrm{p}, \sigma(1,2,3 \ldots p-1 / 2, p+$ $1 / 2 \ldots p-1) \rightarrow(2,4,6 \ldots p-1,1, \ldots p-2)$ ends up as $1+2+\ldots+\frac{p-1}{2}=\frac{1}{2} \frac{p-1}{2} \frac{p+1}{2}=\frac{p^{2}-1}{8}$
- The sign of a permutation is also $(-1)^{r}$, where r is number of inversions.
- Putting all this together yields $\left(\frac{2}{p}\right)=\operatorname{sgn}\left(\sigma_{2}\right)$ by theorem above, $=(-1)^{r}=$ $(-1)^{\frac{p^{2}-1}{8}}$, property 5 in the last section.

22 5.1 Group actions

22.1 Orbit-stabilizer

- Canonical: Group S_{n} acts on elements $X=1,2,3 . . n . ~ G \times X \rightarrow X$
- Also canonical: Any group acts on its own elements with left-multiplication, always. Straightforward action $G \times G \rightarrow G$.
- orbit O_{x} of element x is all the places x could go. Note that in a group there is only one orbit (such an action is called transitive).
- Orbit-stabilizer theorem says, for any $x \in G,|G|=\left|O_{x}\right|\left|G_{x}\right|$.
- item stabilizer G_{x} of element x are the elements mapping x to itself. Note that in a group this is necessarily $G_{x}=e$ since $g \cdot x=x \rightarrow g \cdot x \cdot x^{-1}=x \cdot x^{-1} \rightarrow g=e$.
- Example: $2 n=\left|D_{n}\right|$, and since every vertex element x can be rotated to any other (orbit is size X), stabilizer must be of size 2 (identity, 180 flip)
- Example: Rotations of a dodecahedron: Think of the faces - there are five rotations that fix the face, and the face can go to 12 different spots,so size of the group is 60 . Turns out, also isomorphic to A_{5}.

22.2 Action of $G L_{2}(F)$ on F^{2}

- Action is on left-multiply: $A \cdot\binom{x}{y}=A\binom{x}{y}$
- How many orbits in \mathbb{R}^{2} under this action? Answer: two
- One orbit: The point $\binom{0}{0}$ can only map to itself, and no non-zero determ can map to it $\left(A\binom{x}{y}=\binom{0}{0} \rightarrow\binom{x}{y}=A^{-1}\binom{0}{0}\right.$, which only works for zero x, y or a zerodeteminant matrix.
- The other orbit: There's some invertible A to match any $\binom{x}{y}=A\binom{1}{0}$, either $\left(\begin{array}{ll}a & 1 \\ b & 0\end{array}\right)$ if $y \neq 0$ or $\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$ if $y=0$.
- Example: $G L_{2}\left(\mathbb{Z}_{\mathbf{1}}\right)$ acts on \mathbb{Z}_{\mid}^{2}, just on integers modulo prime $p \mathrm{p}$.
- Orbit of $\binom{1}{0}$ is every non-zero element, so size $p^{2}-1$. Stabilizer is anything $\left(\begin{array}{ll}1 & b \\ 0 & d\end{array}\right)$ with $d \neq 0$, so $p^{2}-p$ elements.

22.3 General group action properties

- Action is regular if $x, y \in X$ have exactly one $g \in G$ so $g \cdot x=y$. So, this means
- There's one orbit, since any x can get to any y.
- Every element's stabilizer is just the identity (uniqueness).
$-|G|=|X|$ since $|G|=\left|O_{x}\right|\left|G_{X}\right|=|X| * 1$
- Really, any such regular action is isomorphic to (G, G) by left-multiplication.
- If x, y in the same orbit in $\mathrm{G}(g \cdot x=y$ for some $g \in G)$ for finite G , then $\left|G_{x}\right|=\left|G_{y}\right|$. Why? First, because of the orbit-stabilizer theorem (same orbit size, same group size). But also the "conjugating" bijection $f(h)=g h g^{-1}$, since $f(y)=g h g^{-1}(y)=$ $g h(x)$ (since $h \in G_{x}$) $=g x=y$. Can reverse it too.

23 Burnside's Lemma

- The number of orbits under a group action is the average, across all group elements, of the fixed point set sizes $\left|X^{g}\right|$. Another way: set of orbits is called $|X / G|$, so $|X / G|=\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|$.
- How to use this to count stuff?
- Group the "same elements" of an object under the action as orbits. So, think of configs of a cube indistinct under rotation to be in the same orbit.
- Count the fixed points under each action $g \in G$.
- Divide by $|G|$.
- Colorings of hexagon edges, coincident by each rotation action: $R_{0}=n^{6}, R_{1}=R_{5}=$ $n, R_{2}=R_{4}=n^{2}, R_{3}=n^{3}$, so sum is $\frac{1}{12}\left(n^{6}+2 n+2 n^{2}+n^{3}\right)$
- Colorings of hexagon edges coincident by reflection OR rotation: across central vertex line $=n^{3}$, across central edge line $=n^{4}$, so adding to previous gives total is $\frac{1}{12}\left(n^{6}+\right.$ $\left.2 n+2 n^{2}+4 n^{3}+3 n^{4}\right)$
- Example: Tetrahedron (n vertex colors, m edge colors): Vertex plus center opposite face: $n^{2} m^{2}$
- Example: Tetrahedron (n vertex colors, m edge colors): Midpoints of opposite edges (think (12)(34)) is $n^{4} m^{2}$
- Example: So in total, tetrahedron is identity $\left(n^{6} m^{4}\right)$ plus the previous two: $\frac{1}{12}\left(n^{6} m^{4}+\right.$ $3 n^{4} m^{2}+8 n^{2} m^{2}$)

24 Aside: Semidirect products: videos

24.1 Semidirect products (inner and outer)

https://www.youtube.com/watch?v=Pat5Qsmrdaw

- inner semidirect product $H \rtimes K=G$ decomposes G into two subgroups H and K , with a few rules
- H and K are complements in $G: H K=G, H \cap K=\{e\}$
- $H \triangleleft G$ (H is normal in G$)$
$-K \subset G$ (K is a subgroup of G)
- Note that a general product of groups $H K$ isn't necessarily a group. But if H is normal, we can guarantee inclusion in $H K$ under the group operation $h_{1} k_{1} \cdot h_{2} k_{2}$
$-h_{1} k_{1} h_{2} k_{2}=h_{1} k_{1} h_{2}\left(k_{1}^{-1} k_{1}\right) k_{2}=h_{1}\left(k_{1} h_{2} k_{1}^{-1}\right)\left(k_{1} k_{2}\right)=\left(h_{1} h_{3}\right)\left(k_{1} k_{2}\right) \in H K$ since $k_{1} h_{2} k_{1}^{-1}=h_{3}$ for some h_{3} since $H \triangleleft G$
$-(h k)^{-1}=k^{-1} h^{-1}=k^{-1} h^{-1}\left(k k^{-1}\right)=\left(k^{-1} h^{-1} k\right) k^{-1} \in H K$ similarly.
- Group $H_{G}=(h, 1) \in H \rtimes K$ is a subgroup isomorphic to H. Same with K.
- A general semidirect product uses this conjugation $\psi_{k_{1}}(h)=k_{1} h_{2} k_{1}^{-1}$ to allow us to combine elements of H together and elements of K together almost separately. Instead of multipiying $\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)$ directly, we use:

$$
-\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)=\left(h_{1} \psi_{k_{1}}\left(h_{2}\right), k_{1} k_{2}\right)
$$

- Every inner semidirect product uses $\psi_{k}(h)=k h k^{-1}$.
- In general, the ψ is a member of $K \rightarrow A u t(H)$, or an isomorphism that translates H to H. So can keep the multiplication of the h elements clean.
- Note that if $\psi=\psi_{i d}$, then you end up with a direct product, or $G=H \times X$.
- Note also that if $H, K \triangleleft G$, then $h k h^{-1} k^{-1} \in H, K \rightarrow h k h^{-1} k^{-1}=e \rightarrow h k=k h$, so the subgroups commute among each other (pass through). Then, the direct product falls out of using $\psi_{k}=i d$, so $h_{1} k_{1} h_{2} k_{2}=h_{1} \psi_{i d}\left(h_{2}\right) k_{1} k_{2}=h_{1} h_{2} k_{1} k_{2} \in$ $H K$. So in this case, $H \times K \cong G$
- Even if G is abelian, $H \rtimes K$ need not be!
- Note that every group G that satisfies the rules above (H is normal in G, K a subgroup, and $\mathrm{HK}=\mathrm{G}$) admits a semidirect product under the conjugation action.
- An outer semidirect product doesn't start with $H, K \in G . H$ and K could be unrelated and with totally separate shapes, as long as $H \cap K=\{e\}$. Then, combining H and K with action ψ can create a new group within $H \times K$ called $H \rtimes_{\psi} K=G$. There can be many distinct choices of ψ, leading to many different products.

24.2 Semidirect products: $D_{2 n}$

https://www.youtube.com/watch?v=DvclxOaWbJM

- $D_{2 n}=\langle r\rangle \times\langle s\rangle$, with r being rotations, s the group of $\{e, s\}$. S is the flip.
- Use the natural inner semidirect product action (conjugation) for ψ.
- Take $\psi_{e}\left(r^{k}\right)=e r^{k} e^{-1}=r^{k}$.
- Take $\psi_{e}\left(r^{k}\right)=s r^{k} s^{-1}=r^{-k} s s^{-1}=r^{-k}$.
- Then, $D_{2} n=<r>\rtimes<s>$
- Example: $\left(r^{4} s\right)\left(r^{3} e\right)=\left(r^{4} \psi_{s}\left(r^{3}\right), s \cdot e\right)=\left(r^{4} r^{-3}, s\right)=(r, s)$. Just like the elements would multuply to $r s$.
- But semidirect products can make things simpler if we use isomorphism to cleaner groups, like $\mathbb{Z}_{n} \times_{\psi} \mathbb{Z}_{2}$, which are isomorphic to $\langle r\rangle,\langle s\rangle$ respectively.
- Then, in $\mathbb{Z}_{n} \rtimes_{\psi} \mathbb{Z}_{2}$, we use $\psi_{0}(a)=a, \psi_{1}(a)=-a$.
- Then, with the same example abve, $(4,1)(3,0)=\left(4+\psi_{1}(3), 1+0\right)=(4-3,1)=$ $(1,1)$. Same!

25 5.3 Semidirect products

- Exercise: If $G=N \rtimes H$, and H has a_{h} elements of order two, similar for N and a_{n}, then G has at least $a_{n}+a_{h}$ elements of order two: $\left(n \in N_{2}, 1\right),\left(1, h \in H_{2}\right)$, and possible combinations like $(1,1) \in \mathbb{Z}_{2} \times \mathbb{Z}_{2}$
- Exercise:Therefore Q_{8} can't be a semidirect product of \mathbb{Z}_{2} and $\mathbb{Z}_{4}\left(\right.$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}$) since it only has one element of order two: -1.
- Exercise: Heisenberg matrix group
$H_{p}=\left(\begin{array}{ccc}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right)$ with $a, b, c \in \mathbb{Z}_{p}$ ends up being $N \rtimes H$, where $N=\left(\begin{array}{ccc}1 & 0 & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right), H=$ $\left(\begin{array}{lll}1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
because
- N is normal (how to prove?) in $G L_{3}\left(\mathbb{Z}_{3}\right)$
-H is a subgroup as well
- $N H=G$ (just multiply)
- $N \cap H=\{e\}$
- Exercise: Constructing a group using outer semidirect product.
- Order of $\psi(a)=2 a$ in \mathbb{Z}_{7} is 3 , since $\psi(\psi(\psi(a)))=a$. So $\psi \in \operatorname{Aut}\left(\mathbb{Z}_{7}\right)$.
- So constructing group $G=\mathbb{Z}_{7} \rtimes_{\psi} \mathbb{Z}_{3}$, with $\psi_{1}(a)=2 a, \psi_{b}(a)=\psi_{1}^{b}(a)$ makes a (nonabelian) group of size 21 .
$-(a, b)\left(a^{\prime}, b^{\prime}\right)=\left(a+\psi_{b}\left(a^{\prime}\right), b+b^{\prime}\right)=\left(a+2^{b} a^{\prime}, b+b^{\prime}\right)$ is the rule.

26 Aside: Sylow Theorems

26.1 Sylow Theorem I

- Link: https://www.youtube.com/watch?v=xTCxmr4ISU4
- Main idea: If $|G|=p^{k} m, \operatorname{gcd}(p, m)=1$, there exists a subgroup of size p^{k}. So, there are one or more subgroups of size p^{k} if k is maximized.
- Proof:
- Main idea: for any set X of size p^{k} (call the totality of them Ω), the coset $g X$ is also of that size, since $\phi(x)=g x$ is injective: $g x=g y \rightarrow g^{-1} g x=g^{-1} g y \rightarrow$ $x=y$.
$-|\Omega|=\binom{p^{k} m}{p^{k}}$.
- There's a theorem that $\binom{p^{k} m}{p^{k}} \equiv m \bmod p$.
- So taking g as an action of each $X \in \Omega$, this itself splits $g \Omega$ into orbits. Then there has to be an orbit $O=g X$ with size not a multiple of p, since $|\Omega|=$ $\binom{p^{k} m}{p^{k}} \equiv m \bmod p$.
- Pick a set $X \in$ some orbit O. So $G \cdot X=O$ since that's how orbits work.
- By orbit stabilizer, $\left|G_{X}\right| \cdot|G \cdot X|=p^{k} m$, but this $|O|=|G \cdot X|$ is not a mutliple of p. So p^{k} divides $\left|G_{X}\right|$.
- If $g \in G_{X}, a \in X, g a \in X$. But $g X$ is always in X (of size p^{k}), so $\left|G_{X}\right| \leq p^{k}$
- So $\left|G_{X}\right| \leq|X|=p^{k}$, but also p^{k} divides $\left|G_{X}\right|$. So $p^{k}=\left|G_{X}\right|$, and this stabilizer group is such a subgroup of G.

26.2 Sylow Theorem II

- Link: https://www.youtube.com/watch? $\mathrm{v}=\mathrm{n} 8$ senIN0RgM
- Main idea: Any two Sylow p-subgroups H, K of G are conjugate, so $H=g K^{-1}$ for some g
- Proof outline:
- Consider the set Ω of all p-Sylow subgroups of G.
- Consider the set G / K, cosets of K in G. K doesn't have to be normal. Of size $p^{k} m / p^{k}=m$.
- The group action of some p-Sylow group H by left multiplication maps H into a number of orbits, totaling size $|H|=p^{k}$.
- By orbit stabilizer theorem, H's orbits $H \cdot g K$ look like $|H|=|H \cdot g K|\left|N_{H}(g K)\right|$, so they all divide p^{k}, so of size $1, p, p^{2} \ldots p^{k}$.
- However, since the sum of these orbit sizes is m, where $\operatorname{gcd}(m, p)=1$, then there must be an orbit $g K$ of size 1 .
- This means that for any $h \in H, h g K \in g K$, or $g^{-1} h g K=K$, or $g^{-1} h g \in K$.
 conjugate
- So, for any two p-groups H, K, we can find a conjugation mapping one to the other.

26.3 Sylow Theorem III

- Link: https://www.youtube.com/watch?v=543-79vKJFw
- Main idea: Call the number of p-subgroups n_{p}. Remember that if $p^{k}=2^{3}=8, p$ is still 2.
- $n_{p} \mid m$
$-n_{p} \equiv 1 \bmod p$
- $n_{p}=|G| /\left|N_{H}(G)\right|$, where $N_{H}(G)$ is the size of the normalizer of H. It follows $n_{p}=1$, then H is normal in G since then $\left|N_{H}(G)\right|=|G|$.
- Proof: $n_{p} \mid m$
- Set: Sylow p-subgroups Ω
- Action: G acting on $P \in \Omega$. as $g \cdot P=g P g^{-1}$
- Then it is true that orbit $G \cdot P=\Omega$, since P and every other p-subgroup are conjugates (Sylow II).
- By orbit stabilizer, $|G=|G \cdot P|| G_{P}\left|=n_{p}\right| G_{P} \mid$ by definition of n_{p}.
- $G_{P}=g \in G: g P g^{-1}=P$, which is the definition of the normalizer $N_{G}(P)$.
- Note that $P \leq N_{G}(P) \leq G$.
- So stabilizer $\left|G_{P}\right|$ under this action is the normalizer. So $|G|=n_{p}\left|N_{G}(P)\right|$. Note: this is the third result.
- $|G|=p^{k} m,|P|=p^{k}, P \leq N_{G}(P)$, so $\left|N_{G}(P)\right|=p^{k} m^{\prime}$ for some m^{\prime}, since P is a subgroup of $N_{G}(P)$.
- Therefore, $\left.n_{p}=\frac{m}{m^{\prime}} \rightarrow m^{\prime} n_{p}=m \rightarrow n_{p} \right\rvert\, m$
- Proof: $n_{p} \equiv 1 \bmod p$
- Set: Sylow p-subgroups Ω, size is n_{p}.
- Action inputs: Take a Sylow p-subgroup $P \in \Omega$. Take element $p \in P$, psubgroup $Q \in \Omega$.
- Action definition: $p \cdot Q=p Q p^{-1}$. This a conjugate of Q so therefore same size, therefore a p-subgropup $\in \Omega$.
- $|P|=p^{k}$, and P and multiplying by P splits Ω into a bunch of orbits.
- Similarly to the earlier argument in part 1 , all of the orbit sizes need to divide p^{k} by orbit-stabilizer, so of size $1, p, p^{2} \ldots p^{k}$.
- Ignore everything bigger than one. So we're looking for number of size-one orbits.
- Take $Q \in \Omega$ where $|P \cdot Q|=1$. Remember $P \cdot Q$ is the set $\left\{p Q p^{-1}, p \in P\right\}$
$-p Q p^{-1}=Q \forall_{p \in P}$ is another way of saying $P \leq N_{G}(Q) \leq G$.
- $Q \leq N_{G}(Q) \leq G$ as well.
$-|P|=|Q|=p^{k},|G|=p^{k} m$, which means $N_{G}(Q)$ is (inclusive) between these two.
- But P, Q are sylow p-subgroups of $N_{G}(Q)$! So they're conjugate $P=g Q g^{-1}, g \in$ $N_{G}(Q)$
- But Q is normal in $N_{G}(Q)$, so $P=g Q g^{-1}=Q$.
- Thus arbitrarily chosen Q has been proven to be P. So P is the only element with an orbit of 1 .

27 5.4 Sylow Practice

- Remember that if H, K are normal subgroups of G, then if they're complements $H K=G, H \cap G=\{1\}$, then $(h, k) \rightarrow h k$ is an isomorphism $H \times K \cong G$.
- Therefore, inductively extending it, if evrry Sylow subgroup of G is normal, then G is isomorphic to direct prodcut of Sylow subgroups. This is true in the case of Abelian groups for example.
- Prove: Every group of order 15 is Abelian.
- 3-subgroup $H: n_{3}=1 \bmod 3, n_{3} \mid 5 \rightarrow n_{3}=1$
- 5-subgroup $K: n_{5}=1 \bmod 5, n_{5} \mid 3 \rightarrow n_{5}=1$
- Both are normal in G (Sylow 3), so $G \cong H \times K$
- Counterexamples from the problem:
* $|G|=16: D_{8}$ is not Abelian.
* $|G|=20: D_{10}$ is not Abelian.
* $|G|=21:$ The semidirect product of $\mathbb{Z}_{3} \rtimes_{\psi} \mathbb{Z}_{7}$ we saw with $\psi(a)=2 a$ was not abelian.
* $|G|=27$: TODO Apparently any p^{3} has two nonabelian groups. (maybe like D_{4} and Q_{8} for 2^{3})
- Problem: How many elements of order 3 does a nonabelian group of order 21 have?
$-n_{3}=1 \bmod 3, n_{3} \mid 7, n_{3} \in\{1,7\}$.
$-n_{7}=1 \bmod 7, n_{7} \mid 7, n_{7}=1$.
- If they're both 1 , then they're both single normal subgroups, so they must be $\cong \mathbb{Z}_{3} \times \mathbb{Z}_{7}$, but that's Abelian. Contradicted assumption.
- So $n_{3}=7, n_{7}=1$. All the 7 subgroups are $\cong \mathbb{Z}_{3}$ and can't overlap except the identity. So $7 * 2=14$ distinct order- 3 elements.
- Problem: How many elements of order 5 does a group of size 60 have?
$-n_{5}=1 \bmod 5, n_{5} \mid 12 \rightarrow n_{5} \in\{1,6\}$
- If $n_{5}=1$, like in \mathbb{Z}_{60}, then it has 4 elements of order 5 .
- If $n_{5}=6$, like in $(a b c d e) \in A_{5}$, there are $5!/ 5=24$ elements.
- Both are possible, so either 4 or 24.
- Problem: If G is of order 12 , and n_{2}, n_{3} are the count of those 2 -, 3 -subgourps, then $n_{2}>1, n_{3}>1$ are possible, but not simultaneously. Prove.
$-n_{2}=1 \bmod 2, n_{2} \mid 6 \rightarrow n_{2} \in\{1,3\}$
$-n_{3}=1 \bmod 3, n_{3} \mid 4 \rightarrow n_{3} \in\{1,4\}$
- Can both be 1 , like \mathbb{Z}_{12}.
- If $n_{2}=1, n_{3}=4$, then there are $4 * 2=8$ elements of order 3 , and in the p^{2}-group, two of order 4 , one of 2 , one of 1 . This is A_{4} with the 3 -groups of form $<(a b c)>$, and the 2-group $\{(12)(34),(13)(24),(14)(23)\} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
- If $n_{2}=3, n_{3}=1$, there is the identity, 2 elements of order 3, and up to six in the 2 -groups. Example would be D_{6}, with $\left.n_{3}=<r_{2}\right\rangle$, and $n_{2}=\left\{\left\{<r^{3}, s\right\rangle\right.$ $\left.\}, s r\left\{<r^{3}, s>\right\}(s r)^{-1}=\left\{<r^{3}, s r^{2}>\right\}, s^{2} r\left\{<r^{3}, s>\right\}\left(s r^{2}\right)^{-1}=\left\{<r^{3}, s r^{4}\right\rangle\right\}$
$-n_{3}=4$ means eight elements of order 3. $n_{2}=1$ fits one 2 -subgroup. No room for more! Can't be both!
- Problem: If G is of order 56 , and n_{2}, n_{7} are the count of those 2 -, 7 -subgroups, then $n_{2}>1, n_{7}>1$ are possible, but not simultaneously. Prove.
$-n_{2}=1 \bmod 2, n_{2} \mid 7 \rightarrow n_{2} \in\{1,7\}$
$-n_{7}=1 \bmod 7, n_{7} \mid 8 \rightarrow n_{3} \in\{1,8\}$
- If $n_{2}=1, n_{7}=8$, then there are $8 * 6=48$ elements of order 7 . There is enough room for only one 2 -subgroup of size $2^{3}=8$. There is a semidirect product way to do this.
- If $n_{2}=7, n_{8}=1$, then the 2 -groups require at most $49, n_{2}$ requires 7 , plus the identity is 57 , so we need a little overlap in the 2 -subgroups. No example provided.
- Problem: If G is of order $70, \mathrm{G}$ must always contain a normal subgroup of order 35 .
$-n_{5}=1 \bmod 5, n_{2} \mid 14 \rightarrow n_{5}=1$
$-n_{7}=1 \bmod 7, n_{7} \mid 10 \rightarrow n_{7}=1$
- Therefore $1=|G| /\left|N_{H_{5}}\right| \rightarrow\left|N_{H_{5}}\right|=|G|$, so $H_{5} \triangleleft G$.
- Therefore $1=|G| /\left|N_{H_{7}}\right| \rightarrow\left|N_{H_{7}}\right|=|G|$, so $H_{7} \triangleleft G$.
- So the product $H_{5} \times H_{7} \cong G$, of size 35 .
- Since any two sylow p-subgroups are conjugate, there's a homomorphism by conjugation $f: G \rightarrow S_{n_{p}}, f$ mapping to some permutation function scrambling n_{p} elements.
- f isn't trivial if $n_{p}>1$, since there are always elements that map one subgroup to another (Sylow II?)
- Kernel of f is normal, like any kernel.
- Example: if $n_{3}=4$, then $f: G \rightarrow S_{4}$ has a kernel which is a proper normal subgroup of G. If $|G|$ doesn't divide $\left|S_{4}\right|=24$, then G has a proper normal subgroup since it can't be injective. We use this to prove G is not simple
- Problem: If $G=D_{6}$, what is n_{2} ?
$-n_{2}=1 \bmod 2, n_{2} \mid 3, n_{2} \in\{1,3\}$.
- So there's $f: D_{6} \rightarrow S_{3}$. But 12 doesn't divide 6 . So f is not injective, so it has a nontrivial kernel, which is a proper normal subgroup.
- The 2-subgroups are given a few problems above: $\left\{\left\langle r^{3}, s\right\rangle\right\}$ and its conjugations by $s r$ and $s r^{2}$.
- Problem: Of those 3 2-subgroups of $G=D_{6}$, use the action $g \cdot H=g H^{-1}$. This gives a homomorphism $f: D_{6} \rightarrow S_{3}$. How many elements does $\operatorname{ker}(\mathrm{f})$ have?
- Of the 3 2-subgroups, we're looking for an element g that doesn't change any of them.
- Note that the center $Z(G)=\left\{e, r^{3}\right\}$ commutes with all.
- Note also that $|G| / n_{2}=12 / 3=4$, and that every one of these groups has its own elements that conjugate H to itself.
- Then, $\left\{e, r^{3}\right\}$ is the intersection of all of the normalizers. There are two elements of $\operatorname{ker}(\mathrm{f})$.
- Problem: If $|G|=132=4 * 33=2^{2} * 3 * 11$, prove it is not simple.
- Note that $n_{2} \neq 1, n_{3} \neq 1, n_{11} \neq 1$ since if it did, that would provide a normal subgroup (since the normalizer is all of G).
- Also, if for any of these $n<11$, then $|G|$ can't divide S_{n} since G has a factor of 11. So this means $f: G \rightarrow S_{n}$ is not injective, therefore nontrivial kernel, therefore normal subgroup.
- So if every one of them is 11 or greater:
$-n_{2}=1 \bmod 2, n_{2} \mid 33, n_{2} \geq 11 \rightarrow n_{2} \in\{11,33\}$
$-n_{3}=1 \bmod 3, n_{3} \mid 44, n_{3} \geq 11 \rightarrow n_{3} \in\{22\}$
$-n_{11}=1 \bmod 11, n_{11} \mid 12, n_{11} \geq 11 \rightarrow n_{11} \in\{12\}$
- But there's no way to have even $n_{3}, n_{1} 1$ in there, since $132<2 * 22+12 * 10$.

