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Abstract

This is a problem I thought about while driving around my town, yelling at pedes-
trians. Turning them into an abstraction proves useful here but it may not hold up in
traffic court.

1 The Problem

Pedestrians are crossing a city street, either going left or right. Orange handheld flags sit
in racks on either side of the street to them to provide visibility to cars (Fig. 1). If there
is a flag in their side’s rack, a pedestrian will take it across the street with them (Fig. 2)
and place it in the opposite rack (Fig. 3). If their side’s rack is empty, they cross the street
anyway and don’t touch the flags (Fig. 4).

Figure 1: Before Crossing

We can assume:

• A very large number of pedestrians cross over the course of the day.

• Pedestrians arrive and cross immediately, one at a time.
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Figure 2: Carry the flag

Figure 3: After Crossing

Figure 4: Flagless Crossing

• Pedestrians cross once, either right to left or left to right, and vanish for the rest of
the day.

• Each crossing is an independent event. The probability that the next pedestrian
crosses left to right is some p, which doesn’t change over the day. Right-to-left is
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then 1− p.

Questions:

1. At the end of the day, suppose we see three flags on the left and one on the right.
What’s the most likely value of p?1

2. Suppose we see k flags on the left and n−k flags on the right. What’s the most likely
value of p?

2 Solution

2.1 Markov Chain Model

Rather than think of a line of pedestrians waiting to cross from either side, we should
instead model this as a series of crossings from the left and right, with probabilities p
and 1− p, respectively. For example, the sequence LRLLR would have probability p(1−
p)p2(1− p).

To describe the flags, we also have states A0...An, corresponding to 0 flags on the right
side of the street, 1 flag on the right, up to n flags on the right. We denote the probability
of being in state Ak as ak.

1− p 1− p 0 0 0
p 0 1− p 0 0
0 p 0 1− p 0
0 0 p 0 1− p
0 0 0 p p

·

a0
a1
a2
a3
a4


(a) Transition matrix from state ~a

Then, starting at time t = 0 from state distribution vector ~a, we can use a Markov model
approach to describe the probability of being in each state at time t = 1. The matrix M
in Fig. 5a, when left-multiplied with state vector ~a at t = 0, produces ~a at t = 1. Mij ,
meaning the element in row i and column j, gives the probability of transitioning from state
Aj to Ai.

2 The first column, then, says that we have a 1 − p probability of transitioning
from state A0 to A0 (a flagless left crossing) and a p probability of transitioning from state
A0 to A1 (a crossing taking one of the n− 0 = n flags on the left with us).

1Given that we have no priors, we could call this the maximum likelihood estimate. Or, the value of p
that makes this most probable.

2Note that I zero-index matrices, a CS-based habit I’ve not been able to break
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2.2 Finding Equilibrium

We assert without proof that M is aperiodic (we’re not going to get into a multi-step cycle,
which seems clear), so by Markov chain theory, repeated application of M will yield an
equilibrium behavior no matter the initial state distribution ~a. Therefore, we need to find
an equilibrium solution as shown in Fig. 6.

1− p 1− p 0 0 0
p 0 1− p 0 0
0 p 0 1− p 0
0 0 p 0 1− p
0 0 0 p p

 ·

a0
a1
a2
a3
a4

 =


a0
a1
a2
a3
a4


Figure 6: Equilibrium assertion

2.3 Finding Equilibrium

Solve for the equilibrium vector (eigenvector associated with eigenvalue λ = 1):

pa3 + pa4 = a5 ⇒ a4 =
p

1− p
a3 (1)

pa2 + (1− p)a4 = a3 ⇒ pa2 + pa3 = a3 ⇒ a3 =
p

1− p
a2 (2)

pa1 + (1− p)a3 = a2 ⇒ pa1 + pa2 = a2 ⇒ a2 =
p

1− p
a1 (3)

pa0 + (1− p)a2 = a1 ⇒ pa0 + pa1 = a1 ⇒ a1 =
p

1− p
a0 (4)

(1− p)a0 + (1− p)a1 = a0 ⇒ (1− p)a0 + pa0 = a0 (5)

(6)

We quickly see a pattern emerge where for 0 < i ≤ n, each ai = p
1−pai−1. This last line

means a0 is unconstrained, but of course the sum of the ai components are 1. Therefore
each of these can normalized by dividing out a0(1 + ( p

1−p)1 + ( p
1−p)2 + ... + ( p

1−p)n−1).

Setting r = p
1−p for convenience, each term becomes rk 1−r

1−rn .

2.4 Solving for p at Equilibrium

We have this formula for the equilibrium value of component ak of ~a: f(k) = rk 1−r
1−rn , where

r = p
1−p .
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Though f is formulaic, setting its derivative to 0 and solving means

0 = f ′(r) =
(1− rn)(krk−1 − (k + 1)rk) + nrn−1(rk − rk+1)

(1− rn)2
(7)

⇔ 0 = (1− rn)(krk−1 − (k + 1)rk) + nrn−1(rk − rk+1) (8)

(9)

It is best to leave finding this roots z to a numerical solver. Once found, we can back out
p = z

1+z .

For n = 4 flags, we have solutions to f ′(k) = 0:

• k = 0, no solution. This corresponds to z = 0 and p = 0.

• k = 1, z = .56774, p = .362

• k = 2, z = 1, p = .5

• k = 3, z = 1.7614, p = .638

• k = 4, no solution. This corresponds to z =∞ and p = 1.

This fits the intuition that for zero flags on the right, p = 0 guarantees this outcome, while
p > 0 does not. The symmetrical argument applies for k = n and p = 1. Finally, for k = n

2 ,
the idea that p = .5 maximizes an even split makes intuitive sense.

For an arbitrary n, k pair, the same methodology should apply.
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