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Note: This was a problem I created for a middle schooler that seemed to keep spiraling.
There are subproblems of varying levels of difficulty.

1 Special Number Endings

In base 10, squaring a whole number sometimes leaves pieces of that number behind. It’s
clear to us that squaring a number ending in zero always produces a number ending in zero,
and squaring a number ending in five ends in five. Playing around a little, you could also
convince yourself correctly that numbers ending in one square to numbers ending in one,
and the same for six. However, these special things (we’ll call them just “endings” through-
out this problem set) can get a lot longer, and have some interesting properties.

Most interesting: There is an infinitely long, nontrivial sequence of digits that, when
squared, ends in itself. We can only ever know the back end of this number. And, in
fact, there are two.

1.1 Problem 1

Prerequisites: Persistence.

What combinations of two digits at the end of a number always see those two digits reappear
at the end when squared? For example, 41002 = 16810000, and similar for anything ending
in 00. How about three digits? This requires only persistence or a little insight.

1.2 Problem 2

Prerequisites: Some algebra.

What do you notice about the two digit endings? If we have a two digit ending that works,
what one digit endings must work? Why? What about finding a two digit ending if you
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know a three digit one? Does this continue indefinitely?

1.3 Problem 3

Prerequisites: Familiarity with programming.

Assume that, for every n there are exactly four endings of length n that square to them-
selves. Use this, and the previous solutions, to find the four 100-digit endings that square
to themselves. Hint: It may be helpful to determine a method for predicting the suitable
endings of length n starting with known endings of length n− 1.

1.4 Problem 4

Prerequisites: Elementary Number Theory

Prove that there are exactly four endings that recreate themselves on squaring, no matter
what the size is. So there is a trillion digit ending (well, four of them) of numbers that
shows up again when you square a number that has it as an ending. There are even four
10trillion digit endings!

2 Solutions

In general, the reader should first convince themselves of a rule of thumb we’ll call the
Only Endings Matter Rule:

Any number whose last digits are ending S will square to a number ending in S if and only
if S2 ends with S.

In other words, for our special endings, it really doesn’t matter if any [more significant]
digits come “before” our ending when evaluating how the endings behave upon squaring.
This isn’t really a special theorem - this is more a simple rule for those new to modular
arithmetic. Note that this only works in bases like 10, 100, 1000, etc. since we’re describing
number endings using digit positions.

For example, it feels obvious that any number ending in 6 when squared ends in 6, but
more formally, for any integer k (k ∈ Z), (10k + 6)2 = 100k2 + 2 × 6 × 10k + 36 =
10(10k2 + 2× 6× k + 3) + 6 ≡ 6 mod 10. That sentence means: whatever whole number
10 × k composes the digits before a final 6 (whether that’s 36, 106, 3423426, -4446...)
doesn’t matter for our purposes: the result of squaring will be “ten times some whole
number”, plus a 6 at the end.

Similar arguments work for any of the “endings” we discover. So if we’re looking at the
behavior of the two-digit ending “76”, we don’t need to check 176, 276, 376, etc. 762 does
all the work for us.
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2.1 Problem 1 solution

• By squaring out all of the number endings from 00 to 99, you can find endings 00,
01, 25, and 76.

• By squaring out all of the number endings from 000 to 999, you can find endings 000,
001, 625, and 376.

2.2 Problem 2 solution

In solving problem 1, you might cut down the space by noticing that any candidates must
end in 0, 1, 5, or 6.

For if not, imagine the ending 47, when squared, left 47 as an ending, or 472 = 47 mod 100.
In that case, adding any whole number of the form 10k and squaring would end with 7
too: (10k + 47)2 = 100k2 + 2 ∗ 47 ∗ 10 + 472 = 10(10k2 + 2 ∗ 47) + 472. The first term
doesn’t affect the last digit, and the last digit is 7 by hypothesis. Therefore, any ending
07, 17, ...47...97 squares to end in 7. Therefore, 7 must be a single digit ending if this is
so.

Of course, 7 does not end in itself when squared, so 47 can’t be a possibility. This leaves
only numbers ending in 0, 1, 5, 6 to investigate for 2-digit endings, and only numbers
ending in 00, 01, 25, and 76 for three digit endings, and so on.

Swapping 47 with generic ending S, the above argument is easily generalized for any number
of digits (size of the exponent for modulus 10n). The upshot: If digits an−1an−2...a0 is an
ending modulo 10n, then an−2...a0 is an ending modulo 10n−1. And, by contrapositive, if
an−2...a0 isn’t an ending, then an−1an−2...a0 can’t be either. So let’s call that the Nesting
Endings Rule.

This will help us trim the space of solutions immensely.

2.3 Problem 3 solution

Here are the endings that square to themselves modulo 10100:

• 00...0 (100 zeroes)

• 00....1 (99 zeroes, then 1)

• 3953007319108169802938509890062166509580863811
000557423423230896109004106619977392256259918212890625

• 604699268089183019706149010993783349041913618899
9442576576769103890995893380022607743740081787109376
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The first two should be obvious from the Only Endings Matter Rule, since 02 = 0, 12 =
1.

The third (“the one ending in 5”) needs to be found more systematically, and programming
likely required in any case. However, brute force won’t do it; using a computer to search
through all numbers exhaustively may work for one, two, three, or even six digits, but
10100 is too large a search space. Two options occur to me:

2.3.1 Option 1: Using the Nesting Endings Rule

This is the most straightforward. We know that if a valid ending exists for ending size n,
then it must contain an ending of size n− 1. So armed with our ending Sn−1 of size n− 1,
we find our next ending by the algorithm:

• Start with S1 = 5, n = 2.

• Loop these:

– Create new candidate 0Sn−1. (Example: If the ending is 625, create 0625.)

– Check if this candidate squares to itself modulo 10n.

– If so, move on to the next n (n← n + 1).

– Otherwise, move on to the next candidate (in this case (1Sn−1)), up through 9.

• (If we’re out of candidates, angry-mail fettermania@gmail.com. We shouldn’t get
here.)

This works because:

• Checking up to 10 digits for 100 rounds is computationally achievable.

• The Nesting Endings Rule states that if there is an ending of greater size, it contains
our last one.

• The problem statement assumed that we have four endings of every size. (We will
prove this in another problem).

• Two endings that end in 0, 1, 5, or 6 of size n cannot “collide” and share an ending
of size n− 1. (Therefore, we have an unbroken string of endings at any size: the one
that stops with 0, the one with 1, the one with 5, and the one with 6).

The no collisions fact can be proved directly. We cannot have x and x + k10n be distinct
solutions modulo 10n+1.

• We suppose x2 ≡ x mod 10n+1 and (x + k10n)2 ≡ (x + k10n) mod 10n+1

• This means x2 − x ≡ 0 mod 10n+1 and (x + k10n)2 − (x + k10n) ≡ 0 mod 10n+1
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• Subtracting these, we get k10n(2x− 1) ≡ 0 mod 10n+1 ⇒ k(2x− 1) ≡ 0 mod 10

• If x ends in 5, 2x− 1 cannot have factors 5 or 2. (The same is also true if x ends in
0, 1, or 6).

• Therefore k must be zero or have divisors 5 and 2, meaning it is 0 modulo 10.

• So, the only way x and x + k10n are both solutions is if they are the same modulo
10n+1. So no collisions are possible.

2.3.2 Option 2: Computing the “5” answer directly

If constructing the answer by hand for the first few digits, you may notice a pattern:

• 52 = 25 ≡ 5 mod 10

• 252 = 625 ≡ 25 mod 100

• 6252 = 390625 ≡ 625 mod 1000

• 6252 = 390625 ≡ 0625 mod 10000

• 06252 = 390625 ≡ 90625 mod 100000

• 906252 = 8212890625 ≡ 890625 mod 1000000

• ...

So the next new digit seems to come from rightmost digit we ‘dropped’ last time when
creating our next ending. Borrow that one, and it’ll be the next prefix we’re looking for
in creating our subsequent ending. This works, though there’s a more precise formulation.
We can see that the formula 52

n−1
will actually find our solution for modulus 10n. In other

words, just square our last solution:

• n = 1: 52 ≡ 5 mod 10⇒ 52 − 5 ≡ 0 mod 10⇒ 5(5− 1) ≡ 0 mod 10

• n = 2 : 252 ≡ 25 mod 100⇒ 252−25 ≡ 0 mod 100⇒ 52(52−1) = 52(5+1)(5−1) ≡
0 mod 100

• n = 3: 6252 ≡ 625 mod 1000 ⇒ 6252 − 625 ≡ 0 mod 1000 ⇒ 54(54 − 1) = 54(52 +
1)(52 − 1) = 54(52 + 1)(5 + 1)(5− 1) ≡ 0 mod 1000

• n = 4: 3906252 ≡ 625 mod 10000 ⇒ 3906252 − 390625 ≡ 0 mod 10000 ⇒ 58(58 −
1) = ... = 58(54 + 1)(52 + 1)(5 + 1)(5− 1) ≡ 0 mod 10000. Note: The solution here,
modulo 10000, is “0625”.

We need to ensure that the candidate on the left hand size has the factors to ensure the
modulus 10n on the right hand side divides it. This works out to n 5s and n 2s. Our fives
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are easy, since 2n−1 ≥ n for all n ≥ 1. And we see that the cascading set of factors on the
right gives us n even numbers, which takes care of our n 2’s.

Naturally, computing 52
100

is prohibitive. Since we’re only looking at the last n digits,
and in arithmetic modulo 10n, those are the only digits that matter, we can simply take
our last solution digits, square them, and take the result modulo 10n for our next set of
digits.

This number is so big it seems like it must be overkill. However, looking at the powers of
5 in a list, we do see a certain binary resemblance. As powers of 5n proceed:

• The third digit (from right) cycles along the list of 2: [6, 1], (looping back to the
beginning when stepping over).

• The fourth digit from right cycles among 4: [0, 3, 5, 8]

• The fifth digit cycles among 8: [9, 5, 6, 2, 4, 0, 1, 7]

• The sixth digit cycles among 16: [7, 8, 1, 7, 4, 5, 5, 8, 4, 2, 3, 6, 2, 0, 0, 3, 9]

This suggests the “tumblers all line up” for endings to match only on powers of 2. Note:
There’s probably another fun problem in here to create.

2.4 What about the “6”?

We have our 00...0 and 00...1 cases, and the ability to compute our answer ending in 5.
We’re only left with the number ending in 6.

It turns out for digit length n, any solution S yields another partner solution (1 − S)
mod 10n (or, equivalently, 10n + 1− S). To see this:

• S2 = S mod 10n+1, by S being a solution.

• (1− S)2 = 1− 2S + S2 = 1− 2S + S = (1− S) mod 10n+1

The second equivalency on the second line follows from the first line.

However, we can’t keep generating new solutions this way, since 1− (1− S) = S. So every
solution ending in “5” has a buddy solution ending in “6”: (5, 10 + 1 − 5 = 6), (25, 100 +
1 − 25 = 76), (625, 1000 + 1 − 625 = 376)... This is how we found the 100-digit solution
ending in “6” above.

2.5 Problem 4 Solution

We want to prove that there are exactly four unique solutions to S2 − S = S(S − 1) ≡ 0
mod 10n. We know:

• If S(S − 1) = 0, then S = 0 or S = 1. This yields our two trivial solutions.
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• Otherwise, S(S − 1) when factorized, must contain 2n and 5n if 10n divides it.

• Since they differ by 1, the first and second factor cannot each contain a factor of 2.

• Since they differ by 1, the first and second factor cannot each contain a factor of 5.

• Therefore, S must be a multiple of 2n and S − 1 a multiple of 5n, or the reverse.

• (1) In the first case, this means S ≡ 0 mod 2n, S ≡ 1 mod 5n.

• (2) In the second case, this means S ≡ 0 mod 5n, S ≡ 1 mod 2n.

The Chinese remainder theorem from Number Theory guarantees the existence and unique-
ness of solutions for (1) and (2) up to 2n ∗ 5n = 10n.

Therefore, we have exactly four solutions.

7


	Special Number Endings
	Problem 1
	Problem 2
	Problem 3
	Problem 4

	Solutions
	Problem 1 solution
	Problem 2 solution
	Problem 3 solution
	Option 1: Using the Nesting Endings Rule
	Option 2: Computing the ``5'' answer directly

	What about the ``6''?
	Problem 4 Solution


