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1 Motivation and Standard Approach

Suppose you were looking to receive $1000 from a tax-deferred savings account
with a tax rate of t = 40%. How much would you have to withdraw in order to
end up with $10007?

There are at least two approaches to this. To societies who’ve discovered division, we can
simply set up equation (1), meaning “My post-tax remainder r of what total withdrawal
x yields $10007”

ra = 1000 (1)

(1 —t)z = 1000 2)
1000

r=o— (3)

(4)

In this case, (3) show us we'd need to withdraw 129 = 1666.67 to get to 1000 after
taxes.

However, there does exist another way to get this figure without the bother of conventional
division.

2 Iterated Withdrawal

Considered by L. F. Waldman, possibly among others, the following method also produces
the desired effect of getting the right amount of post-tax money out.

1. Start with your shortfall zg. In the the above example zo = 1000.



2. Withdraw your shortfall z; from the bank. After setting aside tax debt x; - t, set your
new shortfall x; 11 + x; - t.

3. If shortfall is less than the quantum unit of currency €, end with your withdrawal
and debt piles completed. Else set i <— ¢ + 1 and go to step (1).

Thus, instead of withdrawing $1666.67 and setting aside $666.67 for taxes, we:
e Withdraw 1000, set aside 1000 * .4 = 400. Total post-tax: 600.
e Withdraw 400, set aside 400 * .4 = 160. Total post-tax: 600 + 240.
e Withdraw 160, set aside 160 * .4 = 64. Total post-tax: 600 + 240 + 96.
e Withdraw 64, set aside 64 * .4 = 25.60. Total Post tax = 600 + 240 + 96 + 38.4
o ..

After an infinite number of iterations, We end up with $1666.67 withdrawn from the bank,
$1000 in our pocket and $666.67 for the tax man. Simple!

3 Proof

A pre-tax withdrawal of ;% before application of tax at rate ¢ produces post-tax income of
x. This exercise is left as proof to Larry Waldman[ﬂ We prove that the Waldman-Beltrone
method of withdrawal also produces this result.

If [t| < 1, the well known series Q = 1 +t + t? + 3... converges:

Q=1+t+2+8+. =Dt ()
r=0

tQ=t++£ ' = (6)
r=0

(1-H)Q =1 (7)
1

Q=1— (8)

(9)

But we see that @Q is exactly what we’re calculating in Waldman-Beltone wfithdrawal:

e Withdraw shortfall of 1000 = 1000 x 1 = zt"

1 Also known as “the” reader.



e Withdraw shortfall of 400 = 1000 x .4. = xt!

e Withdraw shortfall of 160 = 1000 * .4 * .4 = xt?

e Withdraw shortfall of 64 = 1000 % .4 % .4 % .4 = xt>.
o ...

We can see that our total withdrawal ends up being (1 + ¢ +t2 +¢3 + ...) = Ty as
above.

4 So what?

This means that we can compute division 5 with —1 < d < 1 entirely from the operations
of addition, subtraction, and multiplication. We can easily expand this to add d # 0 with
the addition of a simple [decimal] shift operator shift(z,a) which shifts the decimal point
a units left if a < 0 and a units right if @ > 0. If we’re operating in base b, this means
multiplying by b°.

Computing ¢ via Waldman-Beltrone division to precision ¢:

1. Shift by a places until |r| < 1.

2. tot < 1,0+ 0,tg=1—1r

3. tiy1 < txt;, tot <t

4. i+i+1

5. If xt; < €, go to step 3.

6. Otherwise, shift x x tot by a places, and return.
The advantages to W-B divison include:

e Ability to implement with only addition, subtraction (to get ¢ = 1—r), multiplication,
and shift operators.

e May impresses your friends.

The disadvantages include:
e Theoretically takes infinite time to complete.
e Difficult and absurd.

We also acknowledge that long division also only requires the operations of addition, sub-
traction, multiplication, and shift (and some sort of “compare”), but we are not personal
friends with Mr. Long, nor do we care to be.
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