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Abstract

We present a modified version of the simple game War with two identical decks, no
replacement, and player card choice, invented in large part and played by my preschool-
age children. Unlike War, there are choices that must be made by the players. But
like War, the outcome of the game, when played by rational agents, remains 100
percent chance. This new game, Dinosaur War, resembles something more akin to
Rock-Scissors-Paper1; knowing an opponent’s guess can guarantee a win, but like
Rock-Scissors-Paper, we show a Nash Equilibrium occurs if both players randomize
their guesses uniformly across their remaining cards, whatever they may be. This re-
sult is intuitive but non-obvious.

Therefore:
• You can play optimally against your child by paying no attention at all.
• Expect a Pokemon-branded version to hit the shelves soon.

1 The Game

Children’s games need to be simple. The game Memory has seen innumerable rebranded
recreations, because the mechanic is approachable (and nominally educational) and it can
be sold repeatedly, with cartoon characters, animals, or whatever to engage a short atten-
tion span. A set of Memory comes with matched pairs of cards with identical backs. Once
the main mechanic is exhausted, the enterprising child will find some other game to create
with this set. Here is that game, Dinosaur War, created with the cards like those in Figure
1.

1.1 Rules of Dinosaur War

• Players establish a ranking of cards, preferably under the direction of an opinion-
ated child. Those might be “Baryonyx beats Mosasaurus beats T-Rex... beats Ap-

1Fine, you call it “Rock Paper Scissors”. Save the pedantry for the math part.
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Figure 1: Dinosaur Cards

atosaurus” in Figure 1, or the commonly-accepted Ace-to-2 if using a deck of playing
cards.

• Two players each get an identical deck of these cards. Cards were unique in this
set but need not be. Players conceal their hand (though the content of the hands is
well-known to those tracking it).

• At each turn:

– Each player simultaneously plays a card face up.

– The player whose card outranks the other’s gets one point. If there is a tie, no
points are awarded. The two played cards are set aside.

– Play continues until the cards are exhausted.

• The player with the most points at the end wins.

The maximum score individual score is 9 (since your opponent’s 10 cannot be beaten, only
tied). Game ties are relatively common.

1.2 “Strategy” in Dinosaur War

Intuitively, your hand has a certain amount of “power” that you deploy to beat an opponent;
spending the minimum amount of “power” to win preserves better cards for later.

Imagine on the first turn of a 10 card deck game with hands A = B = {1, 2, ...10}, players
(PA, PB) play respective cards (9, 10). This means:

• PB takes a one-point lead.

• The 10 card is preserved for PA. They will necessarily win one hand in the future.
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• The powerful 9 card is lost for PA.

Alternatively, imagine the first move is (1, 10). This means:

• PB takes a one-point lead.

• 10 is preserved for PA. They will necessarily win one hand in the future.

• 1 is lost for PA, the worst card in the hand.

• Each card of PA’s hand beats at least one card in PB’s hand.

The second scenario seems better for PA.2 But how much better? And how can one
strategically strive to lose bad cards and win “by just enough” to take tricks? This is the
focus of the paper.

1.3 A reduced example

Throughout, we’ll use the following conventions:

• PA’s available options are listed in bold down the left column of the payoff matrix
(Fig 2a, 2b).

• PB’s available options are listed in bold across the top row.

• A trick has a payoff of 1 if PA wins, and −1 if PB wins. PA is trying to get the total
score as high above zero as possible, PB below.

• For a payoff matrix M , the cell at row i, column j is the value of that trick, plus the
expected value of the remaining game.

This is easy to see in Fig 2a, where the hands are identical. There are only four games of
(PA, PB) move pairs:

• (1, 1) means the first trick payoff is zero, and the rest of the game (necessarily (3, 3))
is determined, also of payoff zero.

• (3, 3) follows similarly.

• (3, 1) means the first trick payoff is 1, and the rest of the game (necessarily (1, 3))
pays off -1, for a total of zero.

• (1, 3) follows in reverse, with another time game.

It’s clear that any strategy is equivalent in this very boring small game. PA could even
announce his moves before PB selects a card, and the result of the game is still determined.
The expected (and only possible )value of this game is zero.

2In this paper, we measure goodness by expected tricks taken by the hand.
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 1 3
1 0 0
3 0 0


(a) Even 2x2 game 3 4

1 0 0
5 0 0


(b) Another even 2x2 game 1 3

2 2 0
4 0 2


(c) Uneven 2x2 game

Figure 2: Simple 2x2 games

Observe in figure 2b that starting sets A = {1, 5}, B = {3, 4}, while not identical, also yield
this result; the choices don’t matter in the end.

But for some uneven sets of cards, like in Fig 2c, things are different.

• If PA is able to play their 2 against a 1 (on either first or second trick), they win
both tricks for a score of 2.

• If PA plays their 2 against a 3, this trick score is -1, but guaranteed to balance by
the imminent (or recently played) (4, 1) trick, for a total of 0.

This is more like Rock-Scissors-Paper : knowing your opponent’s choice wins you the game.
And, like RSP, the mere existence of better choices does not mean that there exists a
perfect-information strategy with a nonzero expected value.

How can we quantify the goodness of one hand versus another? We introduce a metric for
this particular game called the Dominance Score3 and use this to compute the expected
value of more complicated (larger) games.

2 Dominance Score

The dominance score of two equal-sized sets (hands) A = {a1, a2, ...an}, B = {a1, a2, ...an}
is defined as D(A,B) =

∑n
i=1

∑n
j=1 T (ai, bj) , where

3This should not be conflated with a dominant Nash strategy.
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Figure 3: Dominance graph of {2, 3, 6} vs. {1, 3, 5}

T (a, b) =


1 a > b

0 a = b

−1 a < b

This is just adding up all possible winning tricks for A and subtracting all possible winning
tricks for B, ignoring ties. For example, if A = {2, 3, 6}, B = {1, 3, 5}, then D(A,B) =
[T (2, 1) + T (3, 1) + T (6, 1) + T (6, 3) + T (6, 5)] + [T (3, 3)] + [T (2, 3) + T (2, 5) + T (3, 5)] =
5 + 0− 3 = 2.

• The identical hands in figure 2a necessarily have a dominance score of zero.

• Figure 2b’s pair of a hand with the 2nd- and 3rd-highest cards versus one with the
lowest and highest rank, also has a dominance score of zero.

• Figure 2c has a dominance score of two, so it’s not surprising that the expected value
of the game is in player A’s favor (+2).

Another way to visualize hand A against hand B is a bipartite graph like Figure 3, counting
“right-pointing” edges as +1, and “left-pointing” edges as -1. This shows that D({2, 3, 6},
{1, 3, 5}) = 2.

3 Main Theorem and Proof Layout

The main theorem we wish to prove states:

Given rational players, an optimal strategy in Dinosaur War is playing all options with
uniform randomness.
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The steps to proving this are.

• Lemma 1: Across every row and column of the payoff matrix M determined by hands
A and B, the entries sum to the graph’s domination score D(A,B).

• Lemma 2: A payoff matrix of such a form of width n has a Nash equilibrium[2] of
p(ai) = 1

n , p(bj) = 1
n for all i, j ∈ [1, n].

• Lemma 3: The expected value of the game A,B is then D(A,B)
n .

We will do this inductively and simultaneously, in that, if Lemma 1, 2, and 3 are true for
boards of size n− 1 and below, then we can prove them for a board of size n.

Additionally: There are no equilibria with a higher expected value in the game, since
according to Von Neumann’s Minimax theorem[3], all Nash equilibria of a zero-sum game
have the same value. So though there may be other equally good strategies (duplicate
cards in a hand allows the strategy to play one versus the other with some variation; also
see the fait accompli games of Figure 2a, 2b), there are none more optimal than a uniform
strategy.

Finally, we compute our payoff matrix for a larger game of card sets A = B = [1, 10].

4 Lemmas: Base case

4.0.1 Base cases

Base case, n=1 : We see in Figure 4a that D is equal to function H at n = 1: a 1 if player
A’s single card outranks B’s, a 0 for a tie, and a −1 if B’s outranks. With a single element
and therefore single row and column, the Lemma 1 is clearly true. There is only one total
strategy in the game, so Lemma 2 is true. And Lemma 3 is equivalent to Lemma 1 when
n = 1.

(Extra) base case, n=2 : To see how this extends to a 2x2 matrix, consider Fig. 4b display-
ing the payoff matrix built from hands A = (a1, a2) = {3, 6};B = (b1, b2) = {3, 5}.

• The upper-left element is T (a1, b1) + D({a2}, {b2}) = T (a1, b1) + T (a2, b2)

• The upper-right element is T (a1, b2) + D({a2}, {b1}) = T (a1, b2) + T (a2, b1)

• The lower-left element is T (a2, b1) + D({a1}, {b2}) = T (a2, b1) + T (a1, b2)

• The lower-right element is T (a2, b2) + D({a1}, {b1}) = T (a2, b2) + T (a1, b1)

It is clear that summing the top row, bottom row, left column, or right column yields
T (a1, b1) + T (a1, b2) + T (a2, b1) + T (a2, b2) = D(A,B).

At the 2x2 size, it should be clear that:
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[
5

6 1

]
(a) 1x1 base case 3 5

3 1 0
6 0 1


(b) 2x2 base case

Figure 4: Base cases

• The upper left and lower right values are necessarily equal, as are the upper right and
lower left. There are four possible game sequences (completely determined by the
first move), and those starting with, say, (3, 3) in figure 5b need to end with (6, 5),
equivalent to [(6, 5), (3, 3)].

• Because of this identity, the rows and columns all sum to the same value. (proving
Lemma 1 at n = 2)

• An equilibrium strategy of this zero sum game is playing each option with probability
1
2 , as the players are essentially playing a game of Matching Pennies[1] (showing
Lemma 2).

• Therefore, the expected payoff is the average of a(ny) row or column (showing Lemma
3).

5 Inductive case

For the inductive case, consider Figure 5a and Figure 5b. In each, the vertical axis is the
set of moves A for player PA, and the horizontal the move set B for player PB.

In Figure 5a, the element (i, j) represents the game continuation (or subgame) should the
next play be (ai, bj) (so, excluding cards ai and bj). In Figure 5b, the element (i, j) is of the
form (“immediate payoff from move (ai, bj)” and “expected payoff of remaining subgame”).
So, the upper right element of 5b is (1 + .5 = 1.5); the italicized 1 represents that card
2 beats card 1. .5 points is the expected payoff of the subgame {3, 6} vs. {3, 5}, totaling
1.5.

5.1 Inductive case for Lemma 1

In 5a, the subgame at (i, j) is the full game (A − {ai}, B − {bj}). This is “the rest of
the game” with cards ai, bj already used up. By inductive hypothesis, the payoff of the
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1 3 5

2

 3 5
3 1 0
6 0 1

  1 5
3 2 0
6 0 2

 1 3
3 2 1
6 1 2


3

 3 5
2 0 0
6 0 0

  1 5
2 2 0
6 0 2

 1 3
2 2 0
6 0 2


6

 3 5
2 −2 −1
3 −1 −2

 1 5
2 0 0
3 0 0

 1 3
2 1 0
3 0 1




(a) Recursive game matrix
1 3 5

2 (1 + .5 = 1.5) (−1 + 1 = 0)(−1 + 1.5 = .5)
3 (1 + 0 = 1) (0 + 1 = 1) (−1 + 1 = 0)
6(1 +−1.5 = −.5) (1 + 0 = 1) (1 + .5 = 1.5)


(b) Payoff matrix

Figure 5: {2, 3, 6} vs. {1, 3, 5}
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game at matrix entry (1, 1) is D(A− {ai}, B − {bj}), which is the sum of T (am, bn) for all
combinations of m,n except all those where m = i or n = j.

Without loss of generality, consider row a1 (PA plays card 2) in Figure 5a (the subgames)
and in figure 5b. Note that for i = 1, summing across all expected subgame payoffs
D(A−{a1},B−{bj})

n−1 counts each pair T (ai, bj), i 6= 1 exactly n− 1 times. ai, i 6= 1 is always in
each subgame, and bj is in every subgame except those in column j, for a total of n − 1.

So, with each D term fully expanded, the sum includes n − 1 terms
T (ai,bj)
n−1 , i 6= 1. These

correspond to the numbers on the right side of the addition sign in figure 5b.

The immediate payoffs of playing a1 (card 2 in this case) are just T (a1, b1), T (a1, b2)...T (a1, bn),
corresponding to the (italicized) number on the left side of the addition sign in 5b. Of
course, summing the immediate payoffs (

∑n
i=2

∑n
j=1 T (ai, bj)) and the subgame payoffs

(
∑n

j=1 T (a1bj)) is the definition of D(A,B). This proves Lemma 1.

This logic holds equivalently for any other row or any column.

5.2 Lemma 2

Consider a payoff matrix where each row and each column sum to the same value (in our
case, this is always D(A,B)).

A Nash equilibrium occurs for players PA, PB when any deviation of PA from the equilib-
rium benefits PB, assuming PA announces his strategy (and same for PB, PA).

Assume both strategies are uniform: p(a1) = p(a2) = .... = 1
n = p(b1) = p(b2) = ...p(bn).

Then the payoff of any given row i would be, by Lemma 1,
∑n

j=1Mi,j = n · 1nD(A,B) =
D(A,B); the same follows for columns. The sum of all payoffs across the matrix is then
n ·D(A,B).

If PA shifts his strategy to a different distribution p(a1), p(a2), ..., p(an), note that the sum
of all payoffs n ·D(A,B) does not change, since this is simply reallocating the probabilities,
which sum to 1, over different rows each of expected value D(A,B).

• Case 1: If this reallocation sees each column j’s expected payoff
∑n

i=1Mi,jp(ai) still
summing to D(A,B), then the equilibrium condition (and the same expected payoff)
is maintained.

• Case 2: If, however, a column j sums to a value greater than D(A,B), then p(bj) =
1; p(bk) = 0 for (k 6= j) increases PB’s payoff. As a zero-sum game, this decreases
PA’s payoff, and PA would not choose it. Note that if Case 1 does not hold, there
must be a column like j, since the sum across all columns remains n · D(A,B). In
other words, if we’re not in Case 1, column sums can’t all be less than or equal to
D(A,B), or the sum wouldn’t be n · D(A,B), so at least one column has a payoff
greater than D(A,B).
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1 2 3 4 5 6 7 8 9 10
1 0 −8/9 −2/3 −4/9 −2/9 0 2/9 4/9 2/3 8/9
2 8/9 0 −8/9 −2/3 −4/9 −2/9 0 2/9 4/9 2/3
3 2/3 8/9 0 −8/9 −2/3 −4/9 −2/9 0 2/9 4/9
4 4/9 2/3 8/9 0 −8/9 −2/3 −4/9 −2/9 0 2/9
5 2/9 4/9 2/3 8/9 0 −8/9 −2/3 −4/9 −2/9 0
6 0 2/9 4/9 2/3 8/9 0 −8/9 −2/3 −4/9 −2/9
7 −2/9 0 2/9 4/9 2/3 8/9 0 −8/9 −2/3 −4/9
8 −4/9 −2/9 0 2/9 4/9 2/3 8/9 0 −8/9 −2/3
9 −2/3 −4/9 −2/9 0 2/9 4/9 2/3 8/9 0 −8/9
10 −8/9 −2/3 −4/9 −2/9 0 2/9 4/9 2/3 8/9 0


Figure 6: A = B = [1, 10] payoff matrix

With Lemma 2 proven, Lemma 3 follows quickly. Each Mi,j occurs with probablity 1
n2 ,

and the matrix entries sum to n ·D(A,B), so the expected payoff is D(A,B)
n .

6 Considerations and Examples

Computing the expected value of the matrices in Figure 5a recursively gets computationally
expensive, but with this formula in hand, the code 4 becomes very simple: just apply
Lemmas 1-3, and the 10 v. 10 game payoffs are easily generated (Figure 6).

Note that:

• The matrix is obviously symmetric.

• Winning the first trick is neither a net positive nor negative.

• Winning by exactly (n/2) rank spots is neutral; winning a trick by less than that
yields a net positive value (for player PA), and more than that, a negative value.

Though the double-uniform strategy is optimal, and no other perfect information strategies
outperform it (Lemma 2), certainly, like Rock-Scissors-Paper, having an inkling of what
the opponent will do can yield advantage.

Note again that there are cases where the choice of move truly does not matter, (like fig 2a
and 2c), or, in some version of the game, where k duplicate cards could render the choice
between them irrelevant (as long as the sum of the probabilities remains k

n .

This paper has only dealt with the expected value of the game, not the chance of winning,

4https://github.com/fettermania/mathnotes/tree/main/dino/clj/dino/src/dino/core.clj
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though my intuition is that this would follow similarly5.
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5Though this is not a proof!
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