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1 Chapter 1: Basics

1.1 Nonlinear Equations

The two types of problems in this course are:

• Nonlinear equations (several equations on one independent variable)

• Partial differential equations (single equation with several independent variables)

Linear equations have solutions like y1, y2 that can be combined using any c ∈ R like
y1 + cy2.

Linear Example: Bacteria in a dish with a lot of food, no deaths

• b′(t) = rbb(t), rb > 0.rb would be the rate of growth.

• This is linear. Reason 1: d
dt(y1 + cy2) = y′1 + cy′2 = rb(y1 + cy2) since y′ = rby(t), and

same for y2.

• Also, this works because the solution is b(t) = b(0)erbt, so b1(t) + cb2(t) = b1(0)erbt +
cb2(0)erbt = (b1(0) + cb2(0))erbt

Nonlinear Example: Logistic equation: Bacteria in a dish with a lot of food, limited
by carrying capacity M .

• b′(t) = rbb(t)[M − b(t)].

• This is nonlinear. Reason: d
dt(y1 + cy2) = y′1 + cy′2 = rb[y1 + cy2][M − y1 − cy2] =

My1 +Mcy2 − y2
1 − 2cy1y2 − cy2

1y
2
2

• 6= My1 − y2
1 +Mcy2 − c2y2

2 because of the extra −2cy1y2 term.
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Sidebar: Note that this equation b′ = rbb[M − b] is separable, so it can be solved, and the
solution clearly can’t be combined linearly.

• db
dt = rb[M − b]

• db
b(M−b) = rdt

• 1
M (1

b + 1
M−b)db = rdt after partial fractions work

• (ln(b)− ln(M − b)) = Mrt+ C ⇒ ln( b
M−b) = Mrt+ C

• b
M−b = eMrteC

• Initial conditions b = b(t = 0)⇒ b
M−b = b(0)

M−b(0)e
Mrt

• b(1 + b(0)
M−b(0)e

Mrt) = M b(0)
M−b(0)e

Mrt

• b(M − b(0) + b(0)eMrt) = Mb(0)eMrt

• b = Mb(0)eMrt

M+b(0)[eMrt−1]

This logistic solution will taper off to M at some point. Note that limt→∞ b(t) = M since
the non-exponential terms stop mattering. Also b(t) = M sticks as a constant solution or
equilibrium immediately (dbdt = 0). These equilibria tell us what matters - the long-term
behavior of solutions!

Another Example: Lotka-Volterra equation pairs: Bacteria (b) and bacteria-killing phages
(p), with kill rate k.

• The “product” kb(t)p(t) measures the interactions and kills resulting from this.

• b′(t) = rbb(t)− kp(t)b(t), or the normal growth rate minus kill rate

• p′(t) = kp(t)b(t) since phage population grows as it kills bacteria.

• Equilibria include b = 0, p = 0 and b = 0, p > 0, since these are constant solutions,
or places where b′(t) = 0, p′(t) = 0.

Direction fields, with vector pointing along 〈b′(t), p′(t)〉 (one unit of t moves b and p in

ratio p′(t)
b′(t) there) let us follow the arrows to determine the curve over time. In this case,

the bacteria will always go extinct.

However, if we add a new death rate term −dpp(t) so p′(t) = −dpp(t) + kp(t)b(t):

• We get an equilibrium at b =
dp
k , p = rb

k . (Since 0 = b′(t) = rb− kpb, (⇒ pk = r), 0 =
p′(t)− dp+ kpb, (⇒ bk = d))
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• But otherwise the solutions swirl around this point. This is called a cycle. What is
a limit cycle?

Note that there are systems where the “solution particle” neither reaches an equilibrium
or cycles around one point. The Lorenz system famously has this owl-eye shaped double
attractor (an example of strange sets) where initially close particles diverge unpredictably
if the constants ρ, σ, b are chosen right:

• x′(t) = σ(y − x)

• y′(t) = x(ρ− z)− y

• z′(t) = xy − bz

1.2 PDEs

Many methods of attack for PDEs

• Separation of variables

• Power series

• Fourier Transform

Example: Standing wave, where one end of a rope is fixed.

• Vertical displacement from a line of rope: u(x, t) depends on where (x) and when (t).

• Rope’s wave equation is utt = v2uxx, where v is the “constant wave speed”, and
the others are the space, time partials.

• Note that u = cos(vt) sin(x) and u = sin(vt)cos(x) both work.

• If you guess the solution has split variables like u = X(x)Y (y)T (t), then, upon

substitution and division by X(x)Y (y)T (t), δ2u
δt2

= v2[ δ
2u
δx2

+ δ2u
δy2

] yields T ′′(t)
T (t) =

v2[X
′′(x)
X(x) + Y ′′(y)

Y (y) ]

• This method may or may not work. But if it does, it means that since x, y, and t are
independent variables, each individual piece must be constant.

• So, for example, if we know X′′(x)
X(x) = −4π2, we can get to X(x) = sin(2πx)

• The wave equation is similar in 3D: utt = v2[uxx +uyy +uzz], or using the Laplacian,
utt = v2∇2u. Here, u measures not displacement but expansion/compression of air
at (x, y, z), time t.
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Note: This section seems to elide the details of the Fourier transform, simply for a sam-
pling of PDE methods. More justifications of the facts to follow later.

Using Fourier transforms helps turn difficult PDEs into an easier problem like an ODE.
Fourier transforms work best when

• The domain is all of Rn

• The function u vanishes at infinity.

The Fourier transform changes the domain of x to that of ω. It comes with the (highly
simplified) rule (see Vector Calculus course): F [ δfδx ] = iωF [f ].

Fourier Example: Drunkard’s walk.

• One dimensional: moves left or right in a random way. Starts at x = 0, t = 0.

• u(x, t) is probability of being at point x at time t. Naturally,
∫ x=∞
x=−∞ u(x, t)dx = 1.

• Also, it obeys the 1-D diffusion equation δu
δt = δ2u

δx2

• The Fourier transform doesn’t affect t at all. (I think what this means is that F [ut]
is the same as d

dtF [u])

• So by taking Fourier transform of both sides of diffusion equation we get

– F (ut) = δ
δtF (u) since F doesn’t care about t.

– δ2u
δx2

= iωF ( δuδx) = −ω2F (u)

– So δ
δtF (u) = −ω2F (u)

– x has dropped out, then, and this is solvable as ODE F (u) = ce−ω
2t. Take it

on faith that c = 1
2π for now (there are identities later that are used for solving

the Gauss integral, for example)

– Known fact: F [Ae− ax
2

2 ] =
√

1
2πaAe

−ω2
2a

– F (u) = 1
2πe
−ω2t, F [Ae− ax

2

2 ] =
√

1
2πaAe

−ω2
2a so u = Ae

−ax2
2

– Solving, you get A =
√

1
4πt , a = 1

2t , so u(x, t) =
√

1
4πte

−x
2

4t
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2 Chapter 2: Nonlinear Equations

2.1 Lotka-Volterra I

Major ideas:

• phase plane: A two-dimensional visual space of something like b(t) plotted against
p(t), with t unshown.

• direction field: The gradient vector 〈b′(t), p′(t)〉 at every point of the phase plane.

• nullcline: A line at which either b′(t) = 0 or p′(t) = 0

• equilibria: A (center) equilibrium point where b′(t) = 0, p′(t) = 0 or some other
larger (stable or unstable) cycle.

Example: Bacteria vs. phages (again)

• Bacteria unrestrained grow in proportion to their population, so db
dt = rbb(t) (solved:

b(t) = b(0)erbt)

• Phages unfed decrease in proportion to current size, so dp
dt = −dpp(t) (solved: p(t) =

p(0)e−dpt)

• Bacteria die with likelihood of meeting a phage, and phages increase with likelihood
of meeting a bacterium. So the set of equations, for constant k, becomes:

– b′(t) = rbb(t)− kb(t)p(t)

– p′(t) = −dpp(t) + kb(t)p(t)

– The product of p and b makes our equations nonlinear. Very generally, b1p1 =
k, b2p2 = k, but (b1 +b2)(p1 +p2) = b1p1 +b2p2 +b1p2 +b2p1 = 2k+b1p2 +b2p1 6=
2k, so the last two “mixed” terms mean you can’t just add solutions (b1, p1) and
(b2, p2).

General thoughts on this solution:

• So a solution (b(t), p(t)), traces out a curve on the bp-phase plane (b is x-axis, p is
y-axis) as time (unrepresented in the plane) continues.

• If we add a unit tangent vector at every point (B,P ) aligned with (b′(t), p′(t)) =
(rbB − kBP,−dpP + kBP ), we can follow the arrows to see the solution over time.

• The above is called a direction field

• This is sometimes hard to sketch analytically, so we can look to the nullclines: places
where one of the components of the direction field is zero.
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• In this case, (rate of change of bacteria population) b′(t) = rbB − kBP = (rb −
kP )B = 0when B = 0 (no bacteria) or P = rb

k (right amount of phages), and

−dpP + kBP = (kB − dp)P = 0 when P = 0 (no phages) or B =
dp
k (right amount

of bacteria).

• The upshot of nullclines (since we don’t care about P,B ≤ 0): The lines B =
dp
k , P = rb

k divide the plane into pieces where the components of this (continuous)
function pair can’t change sign.

• For instance, B >
dp
k , P < rb

k means b′(t) = rbb− kbp > 0, p′(t) = −dpp+ kdp > 0, so
both populations are growing here. This helps to sketch the curve.

• The curve looks like a counterclockwise whirlpool around the (B,P ) = (
dp
k ,

rb
k ).

(bacteria grow with low but growing phages; bacteria decrease as phages overwhelm;
both decrease as phages starve; bacteria start coming back)

• The center point is a (constant equilibrium) solution, and other solutions swirl
around it but don’t get attracted or repelled.

There are a few types of equilibria:

• This one is a center around which solutions circle.

• A stable equilibrum would see small upsets come back to an unchanging state.

• An unstable equilibrum would see small upsets create wildly divergent paths (like
the Lorenz attractor).

2.2 Lotka-Volterra II

In the Bacteria-Phage system, we can’t yet prove everything rotates around the center.
Let’s do that.

Developing a conserved quantity will help to do that.

Example: Block on a horizontal spring with mass m, spring constant ks:

• x(t): Displacement from rest position.

• v(t) = dx
dt : Horizontal velocity

• dv
dt = −ks

mx(t) by Hooke’s law.

• Suppose there’s some Energy function E(x, v). By chain rule d
dtE(x(t), v(t)) =

dE
dx

dx
dt + dE

dv
dv
dt

• = dE
dx v −

ks
m
dE
dv x. If we set E as conserved, as in E′(t) = 0, then dE

dx v = ks
m
dE
dv x
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• We can eyeball and see that E = 1
2ksx

2 + 1
2mv

2 solves this equation, or we can
assume (additively separable method?) E(x, v) = F (x) + G(v) ⇒ 0 = E′(t) =
F ′(x)v − ks

mG
′(v)x = 0 from the above equations and guess from there.

• Upshot: E = 1
2ksx

2 + 1
2mv

2 doesn’t change over time, so this means for every point
in the xv phase space, that there’s a fixed E such that the particle follows the ellipse
E = 1

2ksx
2 + 1

2mv
2 in phase space around the solution point (0,0) (which has E = 0).

Extended Example: Continuing on finding a conserved quantity for Bacteria / Phage:

• We need to find U(b(t), p(t)) such that U ′(t) = 0, or by chain rule δU
δb

δb
δt + δU

δp
δp
δt = 0

• Subbing in, δU
δb [rbb− kbp] + δU

δp [−dpp+ kbp] = 0

• A hint suggests finding U such that δU
δb = −dp

b + k, δUδp = − rb
p + k to make terms

cancel.

• Integrating these gives us U as both −dp ln(b) + kb+Q(p) and −rb ln(p) + kp+R(b)
so U = −dp ln(b) − rb ln(p) + kb + kp. This weird curve consistutes a level set in
pb-space upon which a solution sits.

• The spring example has an elliptic paraboloid solution. There’s an absolute minimum
(E = 0 at (0, 0)) but level sets become closed loops away from it.

• For the Lotka example, there is a critical point (∇U = ~0) when∇U(b, p) = ( δUδb ,
δU
δp ) =

(k − dp
b , k −

rb
p ) = (0, 0), which is at our known center (

dp
k ,

rb
k )

• Showing that we always increase going away from the point (
dp
k ,

rb
k ) should guarantee

us closed level sets (because they can’t change energy and have nowhere else to go?).

• One method: Assume we’re picking a unit vector ~v = 〈v̂b, v̂p〉 so that our line from

our center is ~v = 〈dpk + tvb,
rb
k + tvb〉. U = F (b) +G(p) in this case, so sub the b part

into F to get F (
dp
k + tv̂b) = dp[1− ln(

dp
k + tv̂b)] +kt~vb. Taking derivative of that w.r.t

t shows it is always positive. Same goes for the G(p) portion of U.

• Another (DF) method: Note that ∇U = (k − dp
b , k −

rb
p )’s grad (second derivative)

is always positive. So derivative itself always has positive slope, and we’ll always
increase around this point.

• Also, we know that the particle travels around the level set (loop) and doesn’t reverse
course, because then, b′(t) = p′(t) = 0, and we only have that at the center point
(nullcline intersection).
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2.3 Linearization

Extended Example: Suppose there’s a limit to bacterial growth Mb, so we cap our
population at Mb.

• If b(t) << Mb, things should be similar. If b(t) is nearly Mb, then growth should

approach 0. So, this implies db
dt = rbb(t) can be updated to db

dt = rbb(t)(1− b(t)
Mb

). Note:
This isn’t the only possibility but we’ll use it.

• This updates our Lotka-Volterra model to something more complicated:

– b′(t) = rbb(t)(1− b(t)
Mb

)− kb(t)p(t)

– p′(t) = −dpp(t) + kb(t)p(t)

• Other than b = 0, p = 0, the meaningful nullclines are solved by setting b′(t) = 0

(yielding rb(1− 2b
Mb

)− kp = 0) and p′(t) = 0 (again yielding b =
dp
k ) (Note: Updated

b to 2b in this, may be wrong)

• Note: We’ll clean up through some MAGIC non-dimensionalization (how to derive?)
to simplify:

– x(t) = 1
Mb
b( t
rb

), y(t) = k
rb

( t
rb

), α =
dp
rb
, β = kMb

rb

– Gives us new equations: dx
dt = x(t)[1− x(t)]− x(t)y(t), dydt = −αy(t) + βx(t)y(t)

– And new nullclines: x+ y = 1, x = a
b

– So there’s an equilibrium point in the positive xy quadrant if: y = 1−x = 1− α
β

and y > 0 implies 1− α
β > 0⇒ α

β < 1

– Looking at the direction field, it appears solutions swirl around and are attracted
into the center point (αβ , 1−

α
β ), making it a stable equilibrum

This is similar to the block-spring example, if a damping term − γ
mv is added.

• dx
dt = v, dvdt = −ks

mx−
γ
mv

• This can be thought of in matrix terms: d
dt

(
x(t)
v(t)

)
=

(
0 1

−ks
m − γ

m

)(
x(t)
v(t)

)
Call the

matrix A.

• From Diff Eq I, the solution is exp(tA) (matrix exponential), making x(t) a linear
combination of eλt or possibly teλt terms, with the eigenvalues as λs.

• The eigenvalues in this case, using the quadratic formula, could be:

– Two real, distinct, negative roots. So, these eλt terms decay, x′(t)→ 0, and x(t)
levels off.
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– Two distinct complex roots with real part − γ
2m < 0. This ends up being some

sines and cosines multiplied by e−
γt
2m , which decays too.

– Finally, if we have a repeated negative real eigenvalue, we have solution x(t) =

Ae−
γt
2m +Bte−

γt
2m , also decaying.

– So in these three cases (others remain) any disturbance in the spring will oscillate
and come to rest at x(t) = v(t) = 0 quickly.

So with linear systems ~x′(t) = A~x(t), the eigenvalues determine what happens around
the equilibrium point. However, the bacteria-phage model is non-linear. Here
is how we linearize for nearby solutions in a nonlinear system:

– Set small disturbance δx(t) << 1, δy(t) << so x(t) = α
β + δx(t), y(t) = 1− α

β +
δy(t)

– Since they’re small, all powers like δx(t)2 and δx(t)δy(t) are considered basically
zero.

– So substitute x(t) → α
β + δx(t), y(t) →= 1 − α

β + δy(t) into our dx
dt and dy

dt
equations.

– This gives us the A solving d
dt

(
δx(t)
δy(t)

)
= A

(
δx(t)
δy(t)

)
, which isA =

(
−α
β −α

β

β − α 0

)
after working through the substitution.

– Finding the eigenvalues here yields the same situation as the block-spring ex-
ample: decays in all situations.

It turns out through the Hartman-Grobman Theorem that, for some continuously
differential vector field F , the behavior of ~x′(t) = ~F (~x(t)) near equilibrium x0, is the
same as the behavior of its linearization through matrix A; this theorem works if and
only if the eigenvalues of A that aren’t all purely imaginary.

The original, uncapped bacteria system from before linearizes like d
dt

(
δx(t)
δy(t)

)
=(

0 −1
α 0

)(
δx(t)
δy(t)

)
, with characteristic equation λ2 + α = 0, α > 0. This means

both values are imaginary, Hartman-Grobman wouldn’t work, and we had to use
something creative like the conserved quantity approach!

2.4 2.4: Hartman-Grobman Theorem

Extended Example: Consider a phage that dies off quicky:
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• db
dt = rbb(t)− kbb(t)p(t), dpdt = −rpp(t) + 0 · b(t)p(t), where kp is the zero (phages don’t
increase, I guess −rp replaces dp), and kb is still the kill factor for the bacteria.

• In this base, b(t) = p(t) = 0 is the only equilibrium.

• Non-dimensionalize as x(t) = b( t
rb

), y(t) = kb
rb
p( t
rb

), α =
rp
rb

• This makes the equations x′(t) = x(t) − x(t)y(t), y′(t) = −αy(t), and the nullclines
therefore x(t) = 0, y(t) = 1, y(t) = 0

• Looking at this six-section direction field, we see that solutions exactly on the y-axis
are attracted to equilibrium (0, 0), and other are repelled.

• This makes sense since if the bacteria is 0, the phage die and approach (0, 0), otherwise
the bacteria multiply and win (so it’s a saddle point)

• The way to tell: linearize the equations. d
dt

(
x(t)
y(t)

)
≈
(

1 0
0 −α

)(
x(t)
y(t)

)
since, if

x(t), y(t) << 1, x(y)y(t) = 0.

• Then the eigenvalues are λ = 1,−α so the solution is Aet, Be−αt for x(t), y(t)
Hartman-Grobman ensures this is the general solution.

However, let’s solve directly and see if we come to the same result.

• y′(t) = −αy(t), y(0) = y0 ⇒ y(t) = y0e
−αt

• With this in hand, dx
dt = x(t) − x(y)y(t) = x(t)[1 − y0e

−αt], x(0) = x0 separates out
to

– dx
x = [1− y0e

−αt]dt

– ln(x) = [t+ y0
α e
−αt] + C

– x = eCet exp(y0α e
−αt)

– x(0) = x0 ⇒ eC = x0e
− y0
α

– ⇒ x(t) = x0e
t exp(y0α (e−αt − 1))

But how do we deform the phase plane so this looks linear? (TODO 12/22/22 - why
do we need to do this?) We need some mapping ~h(x, y) = 〈u(x, y), v(x, y)〉 that is
continuous and invertible (so we don’t “damage” the phase plane). This is called a
homeomorphism.

– So near the equilibrium (0, 0), the equations y′(t) = −αy(t), y(0) = y0 ⇒ y(t) =
y0e
−αt linearized for δx, δy must be similar to those for u(x(t), y(t)), v(x(t), y(t))

– This means we need du
dt = u, dvdt = −αv
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– After doing the substitution, we see that v = v0e
−αt exactly mimics y(t) =

y0e
−αt for the phage solution. So we take v = y.

– Therefore, we know that since u = u0e
t and x(t) = x0 exp(t + y0

α (e−αt − 1)),
that we need u(x(t), y(t)) = u(x0, y0)et

– And this is satisfied if we guess u(x, y) = xe−
y
α and work it out.

– TODO: So have we found our answers u = u0e
t, v = v0e

−αt, as the linearization
predicted? (12/22/22)

– This function ~h(x, y) = (u, v) = 〈xe−
y
α , y〉 is invertible by (x, y) = 〈ue

v
α , v〉,

which is continuous.

2.5 2.5: Application - Lasers

Lasers create excited atoms, which then emit photos while transitioning to an unexcited
state. This system has a close analogue with the previous phages (like photons) and
bacteria (like atoms) model.

• n(t): number of photons in the laser; rg: rate of photons gained (created by excited
atoms transitioning to unexcited state); rl: rate of photons lost (emitted)

• ⇒ dn
dt = rg − rl by definition.

• We can assume we’re losing a constant k (kill?) portion of photons per unit time, so
dn
dt = rg − kn(t), so rl is replaced by kn(t).

• e(t): number of excited atoms (that will maybe create photons). Atoms are excited
by external energy pump.

• Excited atoms radiate (a new photon?) when meeting a photon (which survives the
meeting)

• So we can use the same setup from the bacteria: with I the constant of meeting
(intersect?), rg = Ie(t)n(t)⇒ n′(t) = Ie(t)n(t)− kn(t). So Ie(t)n(t) replaces rg.

Mini example: Assume no photons leave (cap the end of the laser)

• k = 0 in this scenario.

• So every meeting creates one more photon (n→ n+ 1) while enervating one excited
atom (e→ e− 1). This implies, equivalently:

– e+ n is a conserved quantity,

– e(t) + n(t) = e(0) + n(0),

– [e(t) + n(t)]′ = 0
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– Then, if k = 0, n′(t) = Ie(t)n(t) − kn(t), and coupled with e′(t) + n′(t) = 0
above, we have e′(t) = −Ie(t)n(t)

Extended example: Atoms spontaneously lose energy. This is actually what hap-
pens

• From quantum physics, we have a rate s of atoms just (s)pontaneously losing energy.

• We also have an energy (p)ump that energizes atoms with quantity p.

• Then, our change in (e)xcited atoms is e′(t) = p− s− Ie(n)(t)

• So our final laser equations are e′(t) = p− s− Ie(n)(t), n′(t) = Ie(t)n(t)− kn(t)

• If we want to find the smallest p guaranteeing n ≥ 1 (there’s at least one photon) at
equilibrium (e′(t) = n′(t) = 0):

– n′(t) = 0⇒ Ien = kn⇒ n(Ie− k) = 0. If n 6= 0,⇒ e = k
I

– e′(t) = 0⇒ Ien = p− se

– Together, p− se = Ien = kn⇒ kn+ se = p⇒ kn+ skI = p

– n ≥ 1⇒ p ≤ k + ks
I

– Another tactic: We could also assume we start out at equilibrium, so n0, e0

are constant solutions.

– Solving n′ = 0 = Ie0n0 − kn0, e
′ = 0 = Ie0n0 − se0 + p, we find equilibria

n0 = p
k −

s
I , e0 = k

I

– Then, n0 ≥ 1⇒ p
k −

s
I ≥ 1⇒ p ≥ k + ks

I

Non-dimensionalization time:

• Scale against e0(= k
I ), n0(= p

k −
s
I ) like this: x(t) = n(αt)

n0
, y(t) = e(αt)

e0

• NOTE: What does this do? This makes (1,1) the equilibrium, as x(t) = n0
n0

=
1, y(t) = e0

e0
= 1 !

• What α lets us tke n′ = Ien− kn, e′ = −Ien− se+ p and write

– dx
dt = x(t)y(t)− x(t)

– dy
dt = 1

k (pIk − s)[1− x(t)y(t)] + s
k [1− y(t)]

– x′ = αn′(αt)
n0

= xy − x = Ie(αt)n(αt)
kn0

− n(αt)
n0

– αIen−αkn(αt)
n0

= Ie(αt)n(αt)
kn0

− n(αt)
n0

– αIe− αk = Ie(αt)
k − 1⇒ α(Ie− k) = Ie−k

k ⇒ α = 1
k

12



– This solves the x equation, and I suppose it can be validated in the y equation
(tediously).

– If we chunk up our (somehow positive?) constants as c = 1
k (pIk − s), d = s

k , we
end up with y′ = c[1− xy] + d[1− y]

– We only care about x, y > 0, so x′ = 0 = xy − x = x(y − 1) implies y = 1 is a
nullcline

– y′ = 0 = c[1−xy] +d[1− y] = c− cxy+d−dy ⇒ c+d = y(d+ cx)⇒ y = c+d
d+cx ,

a scaled and shifted hyperbola.

Look at the solutions:

– It appears we have a counterclockwise swirl around (1, 1), and nearby solutions
tend toward this equilibrium.

– Hartman-Grobman method: rewrite our linearized solution in neighborhood of
(1, 1) as x(t) = 1 + δx(t), y(t) = 1 + δy(t)

– Using x′ = xy−x, y′ = c[1−xy] +d[1− y] and d
dt

(
δx(t)
δy(t)

)
= A

(
δx(t)
δy(t)

)
, we can

solve and write A =

(
0 1
−c −c− d

)
– Eigenvalues: λ = 1

2(−c− d±
√

(c+ d)2 − 4c)

∗ If square root term is zero, we have repeated eigenvalue, so δx(t), δy(t) are

combos of e−
c+d
2 , te−

c+d
2 , which decays

∗ If square root term is greater than zero, we have two distinct real, negative
eigenvalues (since c, d are positive), so this decays.

∗ If square root term is less than zero, we have distinct complex eigenvalues,

but combos of e−
c+d
2 cos(1

2

√
−(c+ d)2 + 4c), e−

c+d
2 sin(1

2

√
−(c+ d)2 + 4c)

decay too

∗ Note : I suppose Hartman-Grobman can’t work in purely imaginary eigen-
value scenario, because these kinds of functions don’t converge or diverge
without a term outside the sin or cos

∗ And in any case, since these lambdas aren’t strictly imaginary, Hartman-
Grobman works.
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2.6 2.6: Liapunov Equations

We had some intuition that “nearby” solutions would fall into an equilibrium, but what
does “nearby” mean? Liapunov Equations help us here. What is the “basin of attrac-
tion”?

• Suppose we turn the pump off (p = 0), and set spontaneous enervation equal to
photon leak s = k.

• Somehow we can rescale to dx
dt = Ie(t)n(t) − kn(t), dydt = −Ie(t)n(t) − kn(t) which

gives us dx
dt = xy − x, dydt = xy − y

• This means equilibria (x′ = y′ = 0) exist at (0, 0), (1, 1)

• If we’re turning the pump off, we’re looking at equilibrium (0,0). Linearizing, we get

x′ = −δx, y′ = −δy, so a matrix of

(
−1 0
0 −1

)
• With repeated non-imaginary (H-G applies!) eigenvalues −1,−1, we can see that

both e−t, te−t decay, and we get sucked into the origin.

But how do we prove this? Let’s find a conserved quantity U ′(x(t), y(t)) = 0

• U ′(x(t), y(t)) = δU
δx

δx
δt + δU

δy
δy
δt = δU

δx x(y − 1) + δU
δy y(x− 1)

• Setting δU
δx x = −x+ 1, δUδy y = y − 1 makes this zero

• Solving those two by separating variables and combining, we get U = −x+y+ln(|xy |)

• So if we’re stabilizing f = (x−y) (why?), we see (x−y)′ = x′−y′ = (xy−x)−(xy−y) =
x− y = f ⇒ f = e−t

• With x(0) = x0, y(0) = y0 ⇒ f(0) = x0 − y0, f = x(t)− y(t) = (x0 − y0)e−t

• How to express y(t) while eliminating x(t), knowing x(y) − y(t) = (x0 − y0)e−t and
U(x, y) = y − x + ln(|xy |) is conserved? The trick: U(x0, y0) = U(x, y) since it
doesn’t change!

– y0 − x0 + ln(|xy |) = y − x+ ln(|xy |) = −(x0 − y0)e−t + ln(|xy |)

– (1− e−t)(y0 − x0) = ln( x/y
x0/y0

)

– Defining for convenience, f = exp((1− e−t)(y0 − x0)), then f y
y0

= x
x0

– Sub in to x− y = (x0 − y0)e−t : y[x0y0 f − 1] = (x0 − y0)e−t

– Solve for y : y = y0(x0−y0)e−t

x0f(t)−y0

14



– Combine with above to get x = x0(x0−y0)e−tf(t)
x0f(t)−y0

• So with equilibria (0, 0), (1, 1), the direction field computer plot shows us attracted
to (0, 0) (no laser action) pretty much anywhere left and down from (1, 1) in the x, y
phase plane.

• Apparently the linearized solutions near 0, 0 are xlin = x0e
−t, ylin = y0e

−t

• Looking above, if (x0 − y0) ≈ 0, then f(t) ≈ 1, and x, y → xlin, ylin

On to Liapunov functions, which will tell us perhaps the size of the “basin of convergence”,
unlike Hartman-Grobman, which just says there is a neighborhood.

A Liapunov function U(x, y) is

• Continuously differentiable

• With a unique minimum (x0, y0), usually aligned to be U ’s only zero.

• U ′(x(t), y(t)) ≤ 0. Everything “flows downhill”;

• Tailor made for the problem, hard to find.

Back to the rescaled laser example

• x′(t) = x(t)y(t)− x(t)

• y′(t) = c[1− x(t)y(t)] + d[1− y(t)], c, d > 0

– Analogy: The damped-block spring system d
dt

(
x(t)
v(t)

)
=

(
0 1

−ks
m − γ

m

)(
x(t)
v(t)

)
– When γ = 0, we know E(x, v) = 1

2ksx
2 + 1

2mv
2 is conserved when looking at E′

– γ = 0⇒ x′ = v, v′ = −ks
mx

– dE
dt = (1

2ksx
2 + 1

2mv
2)′ = 0 since 1

2(ksxx
′ +mvv′) = 1

2(kxv +mv−km x) = 0

– But if γ 6= 0, ddtE(x(t), v(t)) = d
dt [

1
2ksx

2 + 1
2mv

2] = kxx′ +mvv′

– = kx(v) +mv(−ksm x− γ
mv) = −γv(t)2 = dE

dt

– Total spring energy is then decreasing in the fluid.

– Brilliant has Cool visualization of spiraling down into the ”bowl” of x, y with E
as the z dimension, equilibrium (0, 0, 0)

– We need to choose a γ-fied E−like function that decreases for pairs δx(t), δy(t).
We can choose, like E, some u(δx, δy) = 1

2C1[δx]2 + C2[δy]2.

– Choosing C1 = c, C2 = 1 gives us d
dtu(δx(t), δy(t)) = d

dt(
c
2 [δx(t)]2 + 1

2 [δy(t)]2)
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– = c(dx)(dx)′+dy(dy)′ = c(dx)(dy)+dy(−c(dx)− (c+d)(dy)) = −(c+d)[δy(t)]2

– So u = d
dt(

c
2 [δx(t)]2 + 1

2 [δy(t)]2) is an energy function that could work for the
laser.

Finally, we want to construct a function that

– Doesn’t increase (derivative negative) on any pairs x, y > 0 (pulls down)

– Is near equal to u = c
2(x− 1)2 + 1

2(y − 1)2 near (1, 1). (the energy function for
block-spring above)

– With x′ = xy − x, y′ = c − cxy + d − dy, plus the identity near z ≈ 1 of
ln(z) ≈ (z − 1)− 1

2(z − 1)2...

– You can find U(x, y) = c(x − 1) + (y − 1) − c ln(x) − ln(y) that satisfies all of
these

– It therefore shows that pumped laser solutions tend to equilibrium (1, 1) in the
long term.

The Liupanov method: So this is enough to establish a convergence to an equilibrium?

– Find an equilibrium (x0, y0)

– Find an energy function u that decreases for all pairs (δx(t)δy(t)) near the
minimum.

– Find a Liapunov function U function that decreases EVERYWHERE along
x(t), y(t) (in our domain, like x, y > 0)

– Ensure that U = u in the neighborhood of the equilibrium.

– Then Liapunov’s theorem somehow makes this work (energy decreases, meaning
it circles the bottom of the bowl at equilibrium!)

2.7 Dog chasing a duck (Limit Cycles)

This is a pair of nonlinear equations to determine if a dog in the pond’s interior catches a
duck who skates along the border.

• Variables:

– rp: Radius of pond.

– ~rH : Distance of duck to center (always the radius of the pond)

– ~l: Displacement of dog from duck, which is of some length R at any point.

– θ: Duck’s position in the lake (think polar coordinates)
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– φ: Angle between ~rH and ~l.

– Duck always swims at speed rpθ
′(t), and dog swims at k > 0 times this, or

krpθ
′(t).

• Therefore ~rH = 〈rp cos(θ), rp sin(θ)〉. It’s just the polar coordinates version.

• Doing some geometry gets you ~l = R〈cos(θ + φ, sin(θ + φ)〉

• We can establish ~T = ~rH−~l and dog’s speed squared ‖T ′(t)‖2 = ( ~rH
′−~l′)·( ~rH ′−~l′) =

‖ ~rH ′‖2 + ‖~l′‖2 − 2 ~rH
′~l′

• Naturally, this ‖T ′‖2 is also equal to the constant (krpθ
′)2. Our diff equations will

fall out of these.

• ~rH
2 = r2

p[θ
′(t)]2 since duck’s speed is constant. ~l = (R′)2 +R2[θ′+ φ′]2 after working

it out.

• Finally, after using identities cos(θ + φ) = cos(θ) cos(φ) − sin(θ) sin(φ), sin(θ + φ) =
cos(θ) sin(φ) + sin(θ) cos(φ), we can work out −2 ~rH

′~l′ = −2rpθ
′[R cos(φ)(θ′ + φ′) +

sin(φ)R′]

• After rescaling R to ρ such that R
rp

= ρ and diving our speed equation by constant

rpθ
′, we end up with speed equation k2 = [ρ(1 + dφ

dθ − cos(φ)]2 + (dρdθ − sin(φ))2

• We propose that there are some solutions here for the pursuit equations. We’ll
ignore the generalized form an focus on one set

– ρ(1 + dφ
dθ )− cos(φ) = 0, dρdθ − sin(φ) = −k do work in the above. (Doesn’t prove

others don’t work)

– This leaves our equations as dφ
dθ = cos(φ)

ρ − 1, dρdθ = −k + sin(φ)

– However, there aren’t simple equilibria here. In no world with k 6= 0 does the
dog sit still (or the duck).

– Supposing k < 1 and R,φ are fixed (dog never gets closer and just loops), this
means he’s going in a circle, since the two legs of a triangle (~l, ~rp) and the interior
angle (φ) are fixed, so this fixes length of the third leg, which is a radius

– You can also use dog’s position vectors x(t) = rp cos(θ) − R cos(θ + φ), y(t) =
rp sin(θ) − R sin(θ + φ) and trig identities to prove x(t)2 + y(t)2 = r2

p + R2 −
2rpR cos(φ)

– If k < 1, then solving dρ
dθ = 0 = −k + sin(φ) ⇒ sin(φ) = k ⇒ φ = sin−1(k) and

ρ = cos(φ) = cos(sin−1(k)) =
√

1− k2

∗ Quick proof of cos(sin−1(k)) =
√

1− k2:
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∗ cos2(sin−1(k)) + sin2(sin−1(k)) = 1⇒ cos2(sin−1(k)) = 1− sin2(sin−1(k))

∗ = 1− k2 ⇒ cos(sin−1(k)) =
√

1− k2

– When k < 1, the direction field seems to have attractive equilibriua but GOTCHA:
there are φ angles that differ by 2π units, so they’re the same. The direction
field is a cylinder with circumference 2π, and there are other solutions tracking
toward (sin−1(k),

√
1− k2)

– Linearizing, assume we are near our equilibirum point and φ = sin−1 k+δφ, ρ =√
1− k2 + δρ.

– We can also remember that f(x+ δx) ≈ f(x) + f ′(x)δx from calculus.

– d
dθ [δρ] = d

dθ [ρ−
√

1− k2] = dρ
dθ −

d
dθ

√
1− k2 = −k + sin(φ)

– = −k+sin(sin−1(k)+δφ) and by the calculus rule d
dθ [δρ] = −k+sin(sin−1(k))+

cos(sin−1(k))δφ =
√

1− k2δφ

– And for d
dθ [δφ] = d

dθφ−
d
dθ (sin−1(k)) = cos(φ)

ρ − 1

– Using multivariable hint f(x+ δx, y + δy) ≈ f(x, y) + δf
δxδx+ δf

δy δy,

– f = cos(sin−1(k)+δφ)√
1−k2+δρ

− 1 ≈
√

1−k2√
1−k2 − 1 + − sin(sin−1(k)√

1−k2 δφ− cos(sin−1(k))
1−k2 δρ

– = −kδφ+δρ√
1−k2

– So d
dθ

(
δφ
δρ

)(− k√
1−k2 − 1√

1−k2√
1− k2 0

)(
δφ
δρ

)
, and the eigenvalues aren’t purely imegi-

nary, and the real part is negative, so all decay. Therefore, the equilibrium at
(sin−1(k),

√
1− k2) attracts nearby solutions.

– There aren’t solutions (for K < 1?), but numerically solved, the dog catches at
k > 1, and for k ≤ 1, swims out to a path approaching a circle. This is a limit
cycle, an isolated trajectory that closes on itself.

2.8 Poincare-Bendixson Theorem

Limit cycles in the real world: a chemical reaction in perpetual oscillation!

Key concept - trapping region: a region in phase plane on some region D, with differential
solutions touching every point, where the direction field sees every boundary arrow point
IN. This means:

• The solution has to stay in D.

• Any solution that self-intersects forms a cycle in the phase plane.
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• The three conceivable ways a solution can “snake” around forever (the Poincare-
Bendixson theorem says it):

– Approaches a closed loop in D.

– Approaches a fixed point in D (possibly a special case of the last bullet)

– Cycle: Snake eats its own tail

• A non-cycling solution is the only other possibility - just a point equilibirum.

Example: Chemical oscillatory reaction.

• x is concentration of I−, y is concentration of ClO−2 ions in some reaction.

• a is positive, and clearly x, y ≥ 0 in the physical world.

• Otherwise meaningless equations: dx
dt = 5a− x− 4xy

1+x2
, dydt = x( 4y

1+x2
)

• Solve for equilibria by setting dx
dt = dy

dt = 0

– Denote Q = y
1+x2

– First equation implies x(1 + 4Q) = 5a

– Second euqation, plus knowing x 6= 0, ⇒ x(1−Q) = 0⇒ Q = 1

– Q = 1⇒ 5x = 5a⇒ x = a

– ⇒ 1 = y
1+x2

⇒ y = 1 + a2

– Only solution pair is (a, 1 + a2)

Linearizing the solution around (a, 1 + a2)

• x = a+ δx, y = 1 + a2 + δy ⇒ dx
dt = d[δx]

dt ,
dy
dt = d[δy]

dt

• Call f = d[δx]
dt = 5a− x− 4xy

1+x2
,

• Approximate f(x+ δx, y + δy) ≈ f(x, y) + δf
δxδx+ δf

δy δy

• f(x, y)(a, 1 + a2) = (5a− x− 4xy
1+x2

)(a, 1 + a2) = 5a− a− 4(a1+a2

1+a2
) = 0

• δf
δxδx(a, 1+a2) = (−1− (1+x2)(4y−2x4xy

(1+x2)2
)δx(a, 1+a2) = (−1−4− 8a2

1+a2
)δx = −5+3a2

1+a2
δx

• δf
δy δy(a, 1 + a2) = −4x

1+x2
δy(a, 1 + a2)) = −4a

1+a2
δy

• Call g = d[δy]
dt = x− xy

1+x2

• Approximate g(x+ δx, y + δy) ≈ g(x, y) + δg
δxδx+ δg

δy δy
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• g(x, y)(a, 1 + a2) = x− xy
1+x2

(a, 1 + a2) = a− a1+a2

1+a2
= 0

• δg
δxδx(a, 1 + a2) = (1− (1+x2)y−xy2x

(1+x2)2
)δx(= 1− (1+a2)2−2a2(1+a2)

(1+a2)2
)δx = 2a2δx

• δg
δy δy(a, 1 + a2) = −x

1+x2
δy = −a

1+a2
δy

• ⇒ d
dt

(
δx
δy

)
= 1

1+a2

(
3a2 − 5 −4a

2a2 −a

)(
δx
δy

)
• Let’s arbitrarily choose a = 2 ⇒ (a, 1 + a2) = (2, 5). The coefficient matrix ends up

being 1
5

(
7 −8
8 −2

)
, which has eigenvalues with a positive real ± some i component.

So, Hartman-Grobman applies and we don’t decay into our point but push away.

We want to build the trapping region.

• Remember, dx
dt = 10− x− 4xy

1+x2
, dydt = x(1− y

1+x2
) (subbing in 2 for a)

• On the left, if x = 0 we see dx
dt = 10, dydt = 0. So we’re pointing right (into the first

quadrant region)

• On the bottom, if y = 0, we’re pointing at 〈10− x, x〉 (into the region).

• On the right, for some x = b, 10− b− 4b
1+b2

y will make sure we point left.

• On the top, for some y = c, x(1− c
1+x2

< 0 makes sure we point down.

• Assume, since we’re encircling (2, 5), that b ≥ 3, c ≥ 6 for comfort.

• To satisfy all of these, note x(1 − c
1+x2

) < 0 ⇒ 1 − c
1+x2

< 0 ⇒ c > 1 + x2, 0 < x <

b⇒ c > 1 + b2 ⇒
√
c− 1 > b

• And for 0 < y < c, note that 10− x− 4xy
1+x2

< 10− b < 0.

• Pick b = 11, say, implying 11 <
√
c− 1, so then 123 < c. So (b, c) = (11, 124) ensures

oscillation around (2, 5) without leaving that region.

Tricky: How to reduce this region? No real way except simulation or some tricks. If we
PRESUME a cycle, we can prove the cycle extens to the left of x = 3 or xmin < 3

• META trick: Don’t worry if you have unsolvable integrals - maybe you can cancel
them out. Run with what you have.

• Trick: Assume x(t + T ) = x(t), y(t + T ) = y(t) for some T > 0, or that there’s a
PERIOD T.

•
∫ T

0
dx
dt dt = x(T )− x(0) = 0,

∫ T
0

dy
dt dt = y(T )− y(0) = 0 by fundamental theorem.

• Our equations again: dx
dt = 10− x− 4xy

1+x2
, dydt = x(1− y

1+x2
)
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• So 0 =
∫ T

0 [10−
∫
x(t)− 4

∫ x(t)y(t)
1+x(t)2

]dt by the first equation

• 0 =
∫
x(t)−

∫ x(t)y(t)
1+x(t)2

]dt by the second.

• Subtract four times the second from the first to get 0 = 10T − 5
∫ T

0 x(t) ⇒ 2T =∫ T
0 x(t)dt ≥ intT0 xmindt = Txmin

• So 2 ≥ xmin

2.9 Chaos and the Lorenz Equation

What enabled mathematical chaos (unpredictability in nonlinear differential equations)
was really computers and seeing simulated solutions.

The (simplified) Lorenz system are these equations

• dx
dt = σ(y − x)

• dy
dt = x(ρ− z)− y

• dx
dt = xy − bz

• All with σ, ρ, b > 0

Solving the equations, we see equilibria for these are:

• (0, 0) always

• The two solutions (±
√
b(ρ− 1),±

√
b(ρ− 1), ρ− 1) when ρ > 1.

Looking at 0 < ρ < 1 specifically:

• Linearaizing is simple, with x(t) = δx(t), y(t) = δy(t), z(t) = δz(t) and linearized
system:

• d[δx]
dt = σ(δy − δx)

• d[δy]
dt = ρδx− δy

• d[δz]
dt = −bδz

• d
dt

δxδy
δz

 ≈
−σ σ 0

ρ −1 0
0 0 −b

δxδy
δz


• Characteristic equation is (−b− λ)[(1 + λ)(σ + λ)− σρ] = 0

• Eigenvalues are −b < 0 and λ = 1
2 [−(σ + 1)±

√
(σ + 1)2 − 4σ(1− ρ)]
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• If ρ < 1, we have distinct, real, negative eigenvalues, and a locally attractive equilib-
rium by Hartman-Grobman.

But if ρ < 1 globally attactive? Find a Liapunov function.

• Requirement is that the function U(x(t), y(t), z(t)) is minimized at the equilibrium,
and that as time progresses, U decreases (so we’re sucked into the bowl)

• We suppose that U(x, y, z) = ax2 + y2 + z2 and using xy ≤ 1
2x

2 + 1
2y

2:

– Identity derivation: 0 ≤ (x− y)2 ⇒ 0 ≤ x2 − 2xy + y2 ⇒ xy ≤ 1
2(x2 + y2)

• δU
δx x

′(t) + δU
δy y
′(t) + δU

δz z
′(t) = 2axσ(y − x) + 2yx(ρ− z)− 2y2x+ 2zxy − 2bz2

• = 2(aσ + ρ)xy − 2aσx2 − 2y2 − 2bz2

• GOTHCA: We can’t choose a = − ρ
σ since then U = − ρ

σx
2 +y2 +z2 isn’t minimized

at (0, 0, 0)! So a needs to be positive.

• Choosing a = 1
σ ⇒ aσ = 1, with ρ < 1 ⇒ 2(aσ + ρ)xy − 2aσx2 − 2y2 − 2bz2 <

2aσ(2xy − x2 − y2)− 2bz2 ≤ −2bz2 by the identity above.

• Then U = 1
σx

2 + y2 + z2 decreases as t → ∞ and is minimized at the globally
attractive (0, 0, 0)

If ρ > 1 things get chaotic. Instead of one equilibrium, we have two new ones at (±
√
b(ρ− 1),±

√
b(ρ− 1), ρ−

1). Everything bifurcates, or qualitatively shifts when inching past ρ = 1:

• We have three equilibria.

• The origin turns into a saddle equilibrium.

• Linearizing around (α, α, ρ− 1) with α denoting
√
b(ρ− 1) (pretty straightforward),

we get characteristic equation for A of −λ3−(σ+b+1)λ2−b(σ+ρ)λ−2σb(ρ−1) = 0

• Problem is, setting ρ = 1 drops the (ρ− 1) term and we have −λ(λ2 + (σ+ 1 + b)λ+
b(σ + 1)) = 0, with solutions λ = 0,−b,−σ − 1.

• The last two solutions are attractive, but the zero doesn’t work for Hartman-Grobman.

• If we set λ = (ρ−1)∆r when nudging ρ just over 1, we ignore all λ2, λ3... as negligible
and get −b(σ + ρ)(ρ− 1)∆r − 2ρb(ρ− 1) ≈ 0

• This means ∆r ≈ − 2ρ
ρ+σ , or that this nudged root has to be negative when ρ is near

1.

• More rigorously, we could have proven the roots of the equation are negative for small
ρ− 1 > 0
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• In any case, this means that the near-zero root is negative, so (α, α, ρ − 1) attracts
locally.

• We can show that this applies the same for (−α,−α, ρ− 1)

How do equilibria change as we change ρ?

• We saw the What about as we dial past ρ = 1, our origin equilibrium changes from
globally attractive to saddle point.

• In going from a stable equilibrium with negative real-part eigenvalues (attractors) to
(0, 0, 0) as a saddle (mix of negative and positive real parts), we necessarily have a
point where the eigenvalues’ real parts are zero.

• In other words, λ = ia for some real a.

• Subbing ia into our −λ3− (σ+ b+ 1)λ2b(σ+ρ)λ− 2σb(ρ− 1) = 0, we end up getting
[(σ + b+ 1)a2 − 2σb(ρ− 1)] + i[a3 − (b(σ + ρ)a] = 0

• Then we need a3 − b(σ + ρ)a = 0⇒ a = 0, a = ±,
√
b(σ + ρ)

• If a = 0. the real part isn’t zero. But subbing a = ±
√
b(σ + ρ) gives us solutions for

a set of ρ = σ(σ+b+3)
σ−b−1

• So, when moving past this value, our two new equilibria change from locally attractive
to saddles too.

Can we create a trapping region?

• The hint: The solutions have to pass through every ellipsoid of form R2 = ρx2 +
σy2 + σ(z − 2p)2

• What we need to prove: At every point on the boundary, the direction field points
“in”, or more specifically, the angle between inward normal and direction field is acute.

• This also means that the gradient ∇g of the level set R2 = ρx2 + σy2 + σ(z − 2rρ)2

is the normal. This is 〈2ρ, 2σ, 2(z − 2ρ)〉

• So −∇g · 〈dxdt ,
dy
dt ,

dz
dt 〉 > 0⇒ ...⇒ 2ρσx2 + 2σy2 + 2σz2 − 4ρσz > 0

• Use R2 − ρx2 − σ(z − 2p)2 = σy2 ⇒ ρσx2 + 2σy2 + 2σz2 − 4ρσz > 0

• This simplifies the dot product to 2R2 − 8ρ2σ + 4σρz + 2ρ(σ − 1)x2 > 0

• Since the x2 term is always positive, we just need to set R to clear zero when z is its
most negative (x = 0, y = 0, z = 2ρ− R√

σ
). If we churn a little more we can see that

setting R > 2
√
σρ will provide a trapping region.

Question: Do the confined solutions fill up the whole (ellipsoid) container?
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• Looking at the divergence (volume change of a cube over time) of the solution will
tell us.

• For unspecified reasons, 1
v(t)v

′(t) = ∇ · 〈σ(y − x), x(ρ− z)− y, xy − bz〉 = −σ − 1− b

• Solving, v(t) = v(0)e−t(σ+1+b)

• This means the volume decays to 0, so therefore, our line is confined to a smaller and
smaller space (but not just a point, I guess?)

3 Partial Differential Equations

3.1 1D Wave Equation and D’Lambert’s Formula

General set up: A rope with a fixed right end (boundary condition and a moving left end),
moving up and down.

Start out with special case: no boundary condition (infinite rope, pulse in the middle)

• u(x, t) measures the vertical displacement form the x-axis of the rope at point x, time
t

• Physical observation gives us the PDE rule δ2u
δx2

= δ2u
δt2

(or uxx = utt)

• g(x) = u(x, 0) is the initial shape of the rope.

• It’s assumed that the rope is not moving initally, so ut(x, 0) = 0

Beginning to solve this:

• utt = uxx ⇒ utt − uxx = 0

• Sort of like a2 − b2 = 0 ⇒ (a + b)(a − b) = 0, we have 0 = ( δδt ±
δ
δx)(ut ∓ ux) =

utt − uxt + utx − uxx = utt − uxx

• This means the solution is either u+ = ut + ux or u− = ut − ux. Note - we don’t
solve these simultaneously, since that just gives us u(x, t) = 0.

• These can be written as, e.g. 0 = ut + ux = 〈1, 1〉 · 〈ux, ut〉 = 〈1, 1〉 · ∇u

• TRICK: This is a directional derviative along 〈1, 1〉. Introducing a variable like s
(time (s)hift of (1, 1)) below changes nothing, actually:

– d
ds [u(x+sb, t+sc)] = δu

δx(x+sb, t+sc)b+ δu
δt (x+sb, t+sc)c = 〈b, c〉·∇u(x+sb, t+sc)

– So if we set b = c = 1, we see that d
ds [u(x+ s, t+ s)] = 〈1, 1〉 · ∇u(x+ s, t+ s)

– However, since in our world, ux + ut = 0, then this dot product is zero, and
d
dsu = 0. This is then constant in s.
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– So then u(x, t) = u(x + s, t + s), and shifting x forward by s (seconds?) and
t by the same changes nothing. Interpretation: u(x, t) = u(x + s, t + s) means
that s (“shift”) seconds later, the point x+ s will see the same displacement as
x. The wave goes “right” down the line.

– From this, we see that u+(x, t) = u+(x − t, 0) as well. So, our function at t is
what happened t seconds ago at the origin.

• Note: We can’t have one solution satisfy both conditions u+ = g(x), (u+)t = 0, since
then g′(x) = 0 which only works if g is a constant.

• Also, utt − uxx = 0 is a linear PDE, in that solutons u1(x, t), u2(x, t) see that
δ2

δt2
[c1u1(x, t) + c2u2(x, t)] − δ2

δx2
[c1u1(x, t) + c2u2(x, t)] = 0. Multiply by a constant

or add solutions together and it’s still zero.

• If we set t = 0, we get u(x, t) = c+g(x + t) + c−g(x − t) ⇒ u(x, 0) = c+g(x + 0) +
c−(x− 0) = (c+ + c−)g(x) = u(x, 0) ,so (c+ + c−) = 1

• Differentiating by t, ut(x, t) = c+g
′(x+ t)−c−g′(x− t) so ut(x, 0) = (c+−c−)g′(x)⇒

(c+ − c−) = 0. So c+ = c− = 1
2 , and our solution with initial shape g(x) with

g′(x) = ut(x, 0) = 0 is u = 1
2g(x+ t)− 1

2g(x− t)

• This no-initial-velocity wave function translates into “my displacement at time
3, say, is the average of the initial displacements 3 to my left and 3 to my right” (as
those urges meet at “me” 3 seconds from the start). Conceptually, along the fixed
initial curve g(x), each point sends out two sensors, one left, one right, and averages
the initial values at those points to find itself at time t. So the top of a hill will start
dipping down, becoming two hills pushing out, for example.

With another set of initial conditions u(x, 0) = 0, ut(x, 0) = f(x), we can use the fact

that u(x, t) solving the wave equation implies ut solves it as well! ( δ2u
δt2
− δ2u

δx2
= 0 ⇒

δ
δt [

δ2u
δt2
− δ2u

δx2
] = 0⇒ δ2ut

δt2
− δ2ut

δx2
= 0.)

• Therefore, ut(x, 0) = f(x) admits the same solution ut(x, t) = 1
2 [f(x+ t)− f(x− t)]

• Since u(x, t)− u(x, 0) =
∫

1
2 [f(x+ t)− f(x− t)]dt, and u(x, 0) = 0 by assumption in

this setup, u(x, t) =
∫ s=t
s=0 [f(x+ s)− f(x− s)]ds, which is 1

2

∫
f(s) from x− t to x+ t

= 1
2

∫ s=x+t
s=x−t f(s)ds

And because the region of the intergral for a point x gets wider as t → ∞, on a flat rope
with a pulse in the middle at x = 0, we see u(x, t) sitting at 0 until the wave meets it, at
which point it rises and then stays at the peak (integral of the whole thing).

So d’Alembert’s formula is the superposition of the initially flat wave with the initially
still wave, which accomodates all solutions:
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u(x, t) = 1
2 [g(x+ t) + g(x− t)] + 1

2

∫ s=x+t
s=x−t f(s)ds

For the case of no boundary conditions, this solves utt = uxx for u(x, 0) = g(x), ut(x, 0) =
f(t). In this instance, the propagation speed is clearly finite.

Note: This complete of a PDE solution is unusual.

3.2 Sources and Boundary conditions

Scenario 1: Here, we fix the infinite rope at the origin, with the wave coming in
from the negative x-axis.

Looking at boundary conditions, or constraints on spatial edges of a PDE problem:

• A free boundary (a loop that can shift up and down a pole) will cause a reflected
wave to travel backwards.

• A fixed boundary (setting u(0, t) = 0, t ≥ 0) will cause an inverted pulse backwards.

Scenario 1: fixed boundary case: We set up a function ũ(x, t) = {u(x, t), x ≤ 0; =
−u(−x, t), x ≥ 0} using extension by odd reflection. So an inverted ghost rope exists
to the right of the origin.

Note: This seems to be more about cleverly encoding a boundary behavior (we will invert
our wave) with this ghost rope than proving we’ll have that behavior with math.

• And if ut(x, 0) = 0, g(0) = 0, u(x, 0) = g(x) extended to x > 0 as g̃(x), then
d’Alembert’s applies: ũ(x, t) = 1

2 [g̃(x+ t) + g̃(x− t)]

• So when x ≤ 0, x ≤ t ⇒ −t ≤ x ≤ 0: (meaning, negative x, close enough to the
origin to be affected by time t)

– ũ(x, t) = u(x, t) here, since there’s no inversion on the left side.

– (x+ t) is positive , so g̃(x+ t) = −g(−(x+ t)) by definition of ũ.

– (x− t) is negative , so g̃(x− t) = g(x− t) by definition of ũ.

– So d’Alembert’s reduces to u(x, t) = 1
2 [−g(−(x+ t))+g(x− t)]. This means I’m

the average of the starting position to my left t seconds ago, and the inverted
right-of-origin ghost position to my right t seconds ago

This means that for the part of the rope we care about, x ≤ 0:

• For x ≤ −t (parts of the line unaffected by the reflection so far), u(x, t) = 1
2 [g(x +

t) + g(x− t)]

• For x ≥ −t (parts affected by the reflection) u(x, t) = 1
2 [−g(−(x+ t)) + g(x− t)]
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• The intuition, still hard to visualize: if I’m zero at point -10, and wave crests at -11,
then

– First my left sensor will eat the left wave and I’ll go up and over.

– Then much later my right sensor will eat the right shadow wave and I’ll do the
inverted behavior.

– These in total mean I’ll get a reflection.

– For the intuition, keep moving my point closer to the origin - nothing changes.

Scenario 2: Here, we let the rope slide up and down at the origin, but bound the
total energy:

• One hand on the rope at x = −L, very far away:

• Our energy is the sum of kinetic (change in u based on time?) and elastic (change in
u based on x?) energies.

• E =
∫ x=0
x=−L[( δuδt )2 + ( δuδx)2]dx

• We can’t gain or lose energy. This means dE
dt = 0. Solving that:

– 0 = d
dt(

1
2

∫ x=0
x=−L[( δuδt )2 + ( δuδx)2]dx) = 1

2

∫ x=0
x=−L[ δδt(

δu
δt )2 + δ

δt(
δu
δx)2]dx)

– =
∫ x=0
x=−L[ututt + ux

δut
δx ]dx).

– (Do integration by parts on the second term with U = ux, dV = δut
δx ): 0 =∫ x=0

x=−L[ututt]dx+ uxut −
∫ x=0
x=−L[utuxx]dx =

∫ x=0
x=−L ut[utt − uxx]dx+ uxut

– Since utt − uxx = 0 (REMEMBER YOUR PROBLEM-SPECIFIC IDENTI-
TIES!), ux(0, t)ut(0, t) = 0

– Saying the displacement can’t change with respect to t there gives us the fixed
rope case above, so that’s uninteresting.

– Therefore, if there’s no energy change as the rope vibrates, we know ux(0, t) = 0

Note: Dirichlet conditions are constraints on the value of the function at the boundary
(like u(0, t) = 0). Neumann constraints are on the derivatives at the boundary.

So redoing d’Alembert with the energy conservation, and therefore the “Neumann”
condition ux(0, t) = 0:

– We know if u solves utt − uxx = 0, then ux does too, since 0 = utt − uxx =⇒
0 = d

dx [utt − uxx] = [[ux]tt − [ux]xx] = 0.
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– We know ux(0, t) = 0 by given constaints, so then we enforce this through odd
reflection on ux as well: ũx = {ux(x, t), x ≤ 0;−ux(−x, t), x ≥ 0}

– By D’Alembert, this solves the wave equation with ux(x, 0) = g′(x), so ũx =
1
2 [g̃′(x+ t) + g̃′(x− t)]

– Therefore at −t ≤ x ≤ 0 =, ũx(x, t) = 1
2 [g̃′(x+ t) + g̃′(x− t)] = 1

2 [−g′(−x− t) +
g′(x− t)]

– Then integrating, we drop the minus sign in the first term! u(x, t) = 1
2 [g(−x−

t) + g(x− t)] + C. Note that u(x, 0) = 1
2 [g(x) + g′(x))]⇒ C = 0!

(Note: a nonzero initial velocity profile ut(x, 0) = f(x) can be handled as well. We
skip it).

Remember the 1D springs Wave Equation, where springs are initially l apart, have dis-
placement from this measured by u(x, t), have Hooke’s coefficient k?

• Force pushing from the left on ball x: FL = k[u(x− l, t)− u(x, t)]

• Force pushing from the right on ball x: FR = k[u(x+ l, t)− u(x, t)]

• Additional “source” force F (x, t) means total force Ftot = FL(x, t)+FR(x, t)+F (x, t)

• Ftot = ma = mutt

• The Taylor-ish formula f(x+ δx) ≈ f(x) + f ′(x)(δx) + f ′′(x)(δx)2 means FL +FR ≈
kl2f ′′(x) = kl2uxx

• Therefore, mutt = kl2uxx+F (x, t)⇒ F (x, t) = utt− kl2

m uxx. Set 1 = v = kl2

m , f(x, t) =
F (x,t)
m to get a simplified all-purpose wave equation. f(x, t) = utt−uxx, with f as the

source force-per-unit-mass.

New setup: Source force f(x, t), ignore boundary conditions, and set u(x, 0) = 0, ut(x, 0) =
0 (still, flat (infinite) rope).

• Part 1: We can relate f(x, t) to a made-up intermediate function I(x, t) which has
properties motivated by utt − uxx = ( δδt −

δ
δx)( δuδt + δu

δx)

• I(x, t) = ( δuδt + δu
δx)

• utt − uxx = f(x, t)⇒ ( δIδt −
δI
δx) = f(x, t)

• We can derive that u(x, 0) = 0, ut(x, 0) = 0 means that at x = 0, I(x, 0) = ut(x, 0) +
ux(x, 0) = ux(x, 0)

• Since u(x, 0) = 0 and I(x, 0) = ux(x, 0), I(x, 0) = 0.

We can relate f(x, t) and I(x, t):
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• Use the dummy variable trick, and look at f(x − s, t + s). We know also that
δI
δt −

δI
δx = f(x, t)

• f(x− s, t+ s) = δI
δt (x− s, t+ s)− δI

δx(x− s, t+ s) = d
ds [I(x− s, t+ s)] by chain rule.

• Integrating both sides:
∫ s=0
s=−t f(x− s, t+ s)ds = I(x, t)− I(x+ t, 0) = I(x, t)

• We can rewrite, using k = −s, as I(x, t) =
∫ k=0
k=t f(x + k, t − k)d(−k) =

∫ t
s=0 f(x +

s, t− s)ds

Using the same technique, we can relate I(x, t) and u(x, t) since I(x, t) = ( δuδt + δu
δx)

• Use the dummy variable trick with variable s′ and look at f(x− s′, t− s′). We know
also that δu

δt + δu
δx = I(x, t)

• I(x− s′, t− s′) = δu
δt (x− s, t− s)− δu

δx(x− s′, t− s′) = d
ds′ [u(x− s′, t− s)′] by chain

rule.

• Integrating both sides:
∫ s′=0
s′=−t f(x− s′, t− s′)ds = u(x, t)− I(x− t, 0) = u(x, t)

• We can rewrite, using j = −s′, as u(x, t) =
∫ j=0
j=t f(x − j, t − j)d(−j) =

∫ t
j=0 I(x −

j, t− j)dj

• So, u(x, t) =
∫ s′=0
s′=t f(x− s′, t− s′)ds′ =

∫ t
s′=0 I(x− s′, t− s′)ds′

Combining these, u(x, t) =
∫ t
s′=0 I(x−s′, t−s′)ds′, and I(x, t) =

∫ t
s=0 f(x+s, t−s)ds:

• I(x− s′, t− s′) =
∫ t
s=0 f(x+ s− s′, t− s− s′)ds:

• So u(x, t) =
∫ t
s′=0

∫ t
s=0 f(x+ s− s′, t− s− s′)dsds′

• Change of variables, y = x+ s− s′, w = s′ + s⇒ u(x, t) = 1
2

∫ t
w=0

∫ y=x+w
y=x−w f(y, t− w)dydw

– The 1
2 term apparently comes from the Jacobian ‖ δ(s

′,s)
δ(w,y)‖

• This together means that the points that can influence u(x, t) in the xt−plane are a
triangle with (x, t) as the top, reaching down to t = 0, slope 1. So the “wave speed”
in this setup is 1.

3.3 2D and 3D (Compression) Waves

(Note: The 2D equation will fall out of the 3D one).

Major setup for 3D compression waves:

• Air molecules compress together from sound, so u(x, y, z, y) measures the density of
air at that point.
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• Let’s assume g(x± t) plays the same role as last time: the initial wave state. (Note:
The setup implies we’re looking at waves that propagate at “one x per t”.)

• Sound can come from multiple directions, so the expanded version should look like
u(~x, t) = g(n̂ · ~x± t), with n̂ some fixed direction in R3.

• The equation is utt = uxx + uyy + uzz since:

– Setting n̂ = î or any other basis vector, g(̂i · ~x±) = g(x ± t), which means if
the other dims are zero, then utt = uxx (reduce to 1D case). That checks out
(necessary, not sufficient)

– δ
δt [g(n̂ · ~x± t)] = ±g′(n̂ · ~x± t), same for g′’ and δ2

δt2

– δ2

δx2
[g(n̂ · ~x± t)] = n̂2

xg
′′(n̂ · ~x± t), same for y, z

– Since [n̂2
x + n̂2

y + n̂2
z = 1], utt = uxx + uyy + uzz works out.

– This can also be written utt −∇2u

Setup with a forcing function:

• utt −∇2u = f(~x, t), u(~x, 0) = 0, ut(~x, 0) = 0.

• So with a still, blank initial state f is going to be a POP at the origin for a brief
time.

• Taking our experience from actual sound, we expect it to decrease away from the
origin, and for there to be a finite propagation speed.

• It should also be spherically symmetric.

Switching to spherical coordinates (u depends on r, θ, φ), and using the multivariable chain
rule from vecctor calculus, we get

• ∇2u = 1
r2

δ
δr [r2 δu

δr ] + 1
r2 sin2(φ)

δ2u
δθ2

+ 1
r2 sin(φ)

δ
δφ [sin(φ) δuδφ ]

• If we’re taking this to be spherically symmetric, then we can zero out φ, θ terms:
∇2u = 1

r2
δ
δr [r2 δu

δr ]

• Expanding this out, this means that utt − 1
r2

δ
δr [r2 δu

δr ] = utt − 2
rur − urr = f(r, t)

• If we set U = ru, and churn through with e.g. ur = δ
δr [Ur ] = − U

r2
+ Ur

r , etc., we end

up with Utt − Urr = rf(r, t). Note that U
r = u means that the solution diminishes u

with distance.

• So now we’re solving with U(r, 0) = Ut(r, 0) = 0 since U = ru.
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• Though only r ≥ 0 matters, we need to keep U(0, t) at zero through odd reflection.
Note that if f is even, rf(r, t) is odd.

• The result from last quiz implies: U(x, t) = 1
2

∫ t
s=0

∫ ρ=r+s
ρ=r−s ρf(ρ, t − s)dρds , with s

subbing for dummy w and ρ being the distance instead of y. Note that our function
is really ρf now instead of f .

• Building a “Dirac delta snap” for a symmetric pop at the origin, set f(r, t) =

1
ε e
−π2 r2

ε2 χ(t) for tiny ε

• Define δ(ρ) =
exp(−π

2ρ2

ε2
)

ε2
, change s′ = t− s

• Eventually the math reduces to a delta pop at r − t + s′ (in range) and r + t − s′
(outside the interval)

• The math reduces to
∫ s′=t
s′=0 χ(s′)δ(r − t+ s′)ds′, or just χ(t− r) (due to the integral

of δ being one exactly at t− r.

• Therefore, U(r, t) = { ε3

(2π)2
χ(t− r), t− r > 0; 0, t− r ≤ 0}

• Looking at this, we confirm that disturbance diminishes with distance, and has a
finite propagation speed.

• TODO: So I guess χ is the actual initial wave function of time at the origin? The
delta was I suppose there to “center” it?

What if we don’t have spherical symmetry?

• in the general case, all points ~x influence fixed point ~P through

– Distance separating points r = ‖~x− ~P‖

– Normalized direction ~x−~P
‖~x−~P‖

• However, we can average u over all points r away: U(r, t;P ) = 1
4πr2

∫∫
S(~P ,r u(~x, t)dσ(~x,

with S being the r-sphere around P

• Getting the r-partials requires writing each ~x as some ~P + rn̂ over all directions, and
using the divergence theorem.

• LOTS OF ALGEBGRA IN HERE to get Utt−Urr− 2
rUr = F (r, t) with a dependence

on r, t. ~P . This F is an even function, and it approaches u(x, t) as r approaches zero.

• Our equation ends up being u(~P , t) = 1
4π

∫∫∫
B(~P ,t)

f(~y,t−‖~y−~P‖)
‖~y−~P‖

d~y
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• Like the other case, we see that we points in space affecting U are a “4D cone” with
vertex at (~P , t)

• Also, if we consider that f doesn’t depend on z, we can flatten this spherical integral
to a 2D one by looking at columns of z over the disc of radius t

• This ends up being u(~P , t) = 1
2π

∫∫
B2(~P ,t) f(~y) ln(

√
( t
‖~y−~P‖

)2 − 1 + t
‖~y−~P‖

)d~y

• This method of descent is really just “reducing” our 2D case from a 3D one.

• Also, the spherical averages let us reduce a 3D problem to a 1D problem, given
the assumptions of the problem.

3.4 2D waves (boundary constrained): Separation of Variables

Main idea: “Guess” that a function like u(x, t) can be factored into u(x, t) = X(x)T (t) and
work from there. You can do this recursively as well like u(x, y, t) = S(x, y)T (t), S(x, y) =
X(x)Y (y).

Main Setup:

• Rectangular drumhead from [0, 0] to [w, l]

• Vertical (z) displacement is u(x, y, t), with Dirichlet condition u(x, y, t) = 0 enforced
on the boundary.

• Known that utt = uxx + uyy.

Solving for u by guessing that there’s a split solution u(x, y, t) = S(x, y)T (t).

• utt = uxx + uyy.

• So S(x, y)T ′′(t) = d2S(x,y)
dx2

T (t) + d2S(x,y)
dy2

T (t)

• ⇒ T ′′(t)
T (t) = ∇2S(x,y)

S(x,y)

• Big A-ha: left hand side is a function of t, and right hand of x,y. If they are to be
equal, they must both be (the same) constant.

To solve for T :

• We know T ′′(t)
T (t) is a constant, so equate it to −k2 for some constant k.

• Supposing the solution T (t) = ert ⇒ T ′′ = r2ert, we know r2 = −k2 ⇒ r = ±ik.

• The solution T (t) = Meikt + Ne−ikt is equivalent to T (t) = A cos(kt) + B sin(kt)
since you can express sin, cos as linear combos of eikt = cos(kt)+ i sin(kt) and e−ikt =
cos(kt)− i sin(kt)
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To solve for X,Y :

• ∇2S(x,y)
S(x,y) = −k2 by its equality with T ′′(t)

T (t) .

• Suppose we can formulate a solution so that S(x, y) = X(x)Y (y)⇒ −k2X(x)Y (y) =

Y (y)X ′′(x) + Y ′′(y)X(x)⇒ −k2 = X′′(x)
X(x) + Y ′′(y)

Y (y) .

• So, for some j, X′′(x)
X(x) = −j2 ⇒ X(x) = C cos(jx) + D sin(jx) by the T solution

above.

• However, X(x) = 0 and X 6= 0 (not a constant function) forces us to conclude
C = 0⇒ X(x) = D sin(jx).

• Also, the boundary condition X(w) = 0 also means for every j = nπ
w , n ∈ N,

X(x) = D sin(πnw x)

• Following this identical logic for Y over length l, q = mπ
l ,Y (y) = F sin(πml x)

• Considering that −k2 = −j2 − q2, this means k =
√

(πnw x)2 + (πml x)2

• Then, u = T (t)X(x)Y (y)

• ⇒ u = (Amn cos(
√

(πnw x)2 + (πml x)2)+Bmn sin(
√

(πnw x)2 + (πml x)2))(sin(πnw x))(sin(πml x))

• This runs over all m,n ∈ N

Turning to a circular membrane with radius r0, displacement described by z = u(r, θ, t):

• Boundary condition is then Dirichlet condition u(r0, θ, t) = 0

• utt = ∇2u⇒ utt = urr + 1
rur + 1

r2
uθθ

• (Note: I suppose this magic (forgotten from vector calculus) is because utt = uxx+uyy,
and we’re converting between x, y and r, θ)

• T (t) = A sin(kt) + B cos(kt) by identical logic to the rectangular drum, where T ′′(t)
T (t)

also was a constant.

• Assuming similarly that S(r, θ) = R(r)Θ(θ), you end up with R(r)Θ(θ)[R
′′

R + R′

rR +
1
r2

Θ′′

Θ + k2] = 0

• Finally, if Θ′′

Θ = κ for κ ∈ R, then Θ(θ) = Ce
√
κθ +De−

√
κθ. H

• However, we have an additional condition that we have to be able to rotate the whole
scene by θ = m2π radians and have it remain the same, or Θ(θ + 2π) = Θ(θ). This
means κ < 0 since we’re in “imaginary exponents yielding sign an cosine” territory.

• This implies κ = −m2 for an integerm, and therefore, Θ(θ) = C cos(mθ) +D sin(mθ) .
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• We know also that T (t) = A cos(kt) +B sin(kt)

• Setting Θ′′

Θ = κ = −m2, and withR(r)Θ(θ)[R
′′

R +R′

rR+ 1
r2

Θ′′

Θ +k2] = 0⇒ r2R′′ + rR′ + [k2r2 −m2]R

(a solution we’ll look for later), we have the circular drum solution.

Notes to self:

• Need a clear intuition for a lot of things. What do the variables and their derivatives
physically mean?

• Need more symbolic comfort with how integration works.

3.5 Fundamental Solutions

Main idea: The fundamental solution for the problem seems to:

• Solve the differential equation. Here, it is ut = ∇2u or, specifically, ut = uxx + uyy

• Solve the initial conditions

• More specifically, as t → 0+, u(x, y, t) → g(x, y), or we can “rewind back” to the
initial displacement setup.

• Somehow , this is the function from which all initial setups of the heat equation
(specified as g(x, y)) are built.

Motivation for heat equation (random 1D walk)

• Drunkard starts at lamppost (position 0) and walks left or right every ∆t, each with
probability 1

2

• Probability of being i steps away from lamppost at time n∆t is p(i, n∆t).

• This depends only on p(i−1, n∆t), p(i+1, n∆t) as p(i, (n+1)∆t) = 1
2p(i−1, n∆t)+

1
2p(i+ 1, n∆t)

• We can do the same thing we did the the 1D spring equation and approximate px, pxx
by means of its relation to small perturbances. Then we can relate this to pt.

– Assume we’re going to shrink these moves to ∆X instead of 1.

– We know p(x, (n+ 1)∆t) = 1
2p(x+ ∆x, n∆t) + 1

2p(x−∆x, n∆t).

– We know the calculus rule for smooth f , small ∆x: f(x+∆x) ≈ f(x)+f ′(x)∆x+
1
2f
′′(x)(∆x)2

– Applying this, this means 1
2p(x, (n+ 1)∆t) + 1

2p(x−∆x, n∆t) = 1
2 [p(x, n∆t) +

px(x, n∆t)∆x+1
2pxx(x, n∆t)(∆x)2]+1

2 [p(x, n∆t)+px(x, n∆t)∆(−x)+1
2pxx(x, n∆t)(∆−

x)2] = p(x, n∆t) + 1
2 [∆x]2pxx(x, n∆t)
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– So for small steps, p(x, (n+1)∆t) ≈ p(x, n∆t)+ 1
2 [∆x]2pxx(x, n∆t)]. So we have

this rule for p relating to derivatives along x.

– Now let’s relate to derivatives along t! For small ∆t, the definition of δp
δt =

p(x,(n+1)∆t)−p(x,n∆t)
∆t ≈ [∆x]2

2∆t
δ2p
δx2

(x, n∆t)

– Special case: If we set t = n∆t, then in this case, we can say δp
δt = D∇2p,D > 0

if D = [δx]2

2∆t , the diffusion equation. Note: Since we’re pushing ∆x,∆t → 0,

is this, uh, D ≈ [∆x]2

2∆t ?

We consider that p should be peaked (sharply) around 0, since it’s just as likely to go left
as right. We hypothesize that we should use a (sharp) bell curve to make that happen.
(Note: Is this sort of like the Dirac Delta function?)

• Looking at D = [∆x]2

2∆t , we hypothesize that the operative units must be x2

t

• Therefore our bell curve looks like p(x, t) = C(t) exp{− x2

σ2t
}

• Since it’s a probability measure along the real line,
∫ x=∞
x=−∞ p(x, t)dx = 1. At time t,

the particle is at some x.

• Using identity
∫ u=∞
u=−∞ e

−au2du =
√

π
a , a > 0⇒ a = 1

σ2t
⇒ C(t) = 1

σ
√
πt

• Even though our guess was unsubstantiated, we see p(x, t) = 1
σ
√
πt

exp{− x2

σ2t
} solves

pt = Dpxx.

• To solve for D, find pt = δ
δt [

1
σ
√
πt

exp{− x2

σ2t
}], same for pxx. Through lots of chain rule

churning, we see pt = σ2

4 pxx ⇒ D = σ2

4 ⇒ σ = 2
√
D. Note that p can’t be negative,

so ignore -2
√
D.

• This implies our solution is p(x, t) = [ 1√
4πDt

exp{− 1
4D

x2

t }], t > 0

To say our solution is a fundamental diffusion solution means, further, that we can
start with any initial conditions p(x, 0) = g(x), watch the equation unfold over t, and we’ll
still have pt = Dpxx.

• A convolution (Φ ? g)(x, t) of (probability function) Φ and initial state g is the
function that combines the two at point x, or (f ? g)(x)

∫ y=∞
y=−∞ f(x − y)g(y)dy =∫ y=∞

y=−∞ f(y)g(x−y)dy. So it’s the probability that f times g is x over the full domain
for both.

• In this case, (Φ?g) = p(x, t) =
∫ y=∞
y=−∞Φ(x−y)g(y)dy

∫ y=∞
y=−∞

1√
4πDt

exp{− 1
4D

(x−y)2

t }g(y)dy, t >
0

• It has the properties:
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– limt→0+ p(x, t) = g(x) for every reasonable choice of p(~x, 0) = g(~x).

– pt = Dpxx

• Note we can find a fundamental solution for the heat equation ut = ∇2u as well

– For some v, we can hypothesize a distribution function Φ(~x, t) = t−av(‖x‖
2

t )

– Taking derivates δ
δt ,

δ2

δx2i
lets us use ut = ux0x0 + ux1x1 + ...

– Calling the argument z = ‖x‖2
t , we take derivatives and find 0 = av(z) + (z +

2n)v′(z)+4zv′′(z). Note that n is from Rn, since∇(‖~x‖2) = 2~x and∇·(2~x) = 2n.

– How do we choose a so that the equation can be solved as 1
4v(z) + v′(z) = 0?

– Note that if [1
4v(z) + v′(z)] = 0, then its derivative d

dz [1
4v(z) + v′(z)] = [1

4v
′(z) +

v′′(z)] = 0

– Setting a = n
2 , we get 0 = 2n[1

4v(z) + v′(z)] + z
4
d
dz [1

4v
′(z) + v′′(z)]

– We can rearrange to see [av(z) = 2nv′(z)] + z[v′(z) + 4v′′(z)] = 0.

– Therefore the solution is Φ(~x, t) = t−
n
2 v(‖x‖

2

t ). To find v, solve [1
4v(z)+v′(z)] = 0

– This is obviously v(z) = Ce−
1
4
z, or Φ(~x, t) = Ct−

n
2 v(‖x‖

2

t ), but we must find C
so that

∫
Φ = 1.

– The identity
∫
Rn e

−a‖x‖2 = (πa )
n
2 helps us find limt→0+

C

t−
n
2

∫
e−
‖x‖2
4t d~x = limt→0+

C

t−
n
2

(4πt)
n
2 =

C(4π)
n
2

– So the fundamental heat solution is Φ(~x, t) = (4πt)−
n
2 e−

‖x‖2
4t

• As an example, take g(x, y) = u(x, y, 0) = u0e
−x2+y2 , like a candle had heated the

origin.

– Solving u(x, y) = (Φ?g)(~x, t) = u0
4πt

∫
R2 e

−‖x−y‖2
4t e−‖y‖

2
d~y basically requires com-

pleting the square to get rid of the 2~x · ~y components, then changing variables
~v = ~y − 1

1+4t~x, which, over the whole plane, is the same integral.

– You end up with u(x, y, t) = u0
1+4te

−x
2+y2

1+4t

– Computing partial derivatives ut, uxx, uyy, checking ut = uxx + uyy and seeing
that limt→0+ u(x, y, t) = g(x, y) validates it.
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– And it turns out, using identity
∫
R2 e

−a(x2+y2)dxdy = π
a (the square of the 1d

case), that utot = u0
1+4t

∫
R2 e

−x
2+y2

1+4t dxdy = u0
1+4t(π(1 + 4t)) = πu0, so the total

energy doesn’t depend on time. It is conserved.

3.6 Fun with Functionals

Note that the heat solution (ut = ∇2u) and the diffusion equation (pt = D∇2p) are very
similar. The first measures how much heat (density) u(x, y, z, t) exists at a spot u in time;
the second measures the probability density of a (particular) particle being in that spot at
a time. This means we can think about one in terms of the other.

If, for example, we confined our space G to an ellipsoid (or really, any closed region) in R3,
then saying “it’s insulated to any heat going in our out” and “particles are confined to not
leave or enter” is the same thing. They would have these things in common:

• The solutions feel like they should settle down to a constant, uniform value as t→∞

• The transfer at the “skin” δG is zero so on the boundary, for normal n̂,Dn̂|δG =
∇u · n̂|δG = 0. Otherwise, the heat transfer, say, would be nonzero. (Note that this
is an example of a Neumann condition.)

• This means that d
dt

∫∫∫
G ud~x = 0. For one, no heat entering or leaving means the total

has to stay the same. Also consider that d
dt

∫∫∫
G ud~x =

∫∫∫
G utd~x =

∫∫∫
G∇

2ud~x (by
heat equation definition) =

∫∫∫
G∇· (∇u)d~x =

∫∫
δG∇u · n̂dσ(~x) (by divergence them

on function ∇u) = 0.

• We can define a cost function C = 1
2

∫∫∫
G[(∇u) · (∇u)]d~x = 1

2

∫∫∫
G[(∇u)]2d~x, since

this is zero exactly when ∇u · ∇u = 0 all over the space.

The idea of functionals is that these setups for “energy” (E[u] =
∫∫∫

G ud~x) and “cost”
(C[u] = 1

2

∫∫∫
G[∇u]2d~x) take in functions to become scalar-producing functions them-

selves.

We can prove a few things, like the fact that the cost decreases over time:

• d
dt [

1
2

∫∫∫
G[∇u]2dx]

• = 1
2 [
∫∫∫

G
δ
δt [∇u]2dx] by... Fubini’s maybe ?

• =
∫∫∫

G[∇u · ∇ut]dx by the chain rule (applied to each dimension, basically)

• Do a multivariable product rule ∇·[fV ] = ∇f+V ·f∇·V ⇒ ∇f ·V = ∇(fV )−f∇V ,
setting f = ut, V = ∇u

• This gives C[u] = 1
2

∫∫∫
G[∇u]2dx =

∫∫∫
G{∇ · [ut · ∇u]− ut∇ · ∇u}dx
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• Using divergence on the first term gives =
∫∫∫

G{∇ · [ut · ∇u] =
∫∫
δG[ut · ∇u] = 0 by

the boundary Neumann conditions

• The second term −
∫∫∫

G(ut∇ · ∇u)dx = −
∫∫∫

G(ut∇2u)dx = −
∫∫∫

G[∇2u]2dx by
definition of heat equation. The integrand (a square) must be non-negative, so the
whole thing has to decrease or stay constant.

Note that if
∫∫∫

G[∇2u]2dx = 0 (exact equality), then u must be constant.

• The above equation implies that ∇2u = 0 throughout G.

• Use the product rule in reverse again, with f = u, V = ∇u : ∇ · (u∇u) = ∇u · ∇u+
u∇2u

• We proved the second term is zero. (The first term is equivalent to ‖∇u‖2, by the
way.)

• The divergence theorem says
∫∫∫

G∇ · (u∇u)dx =
∫∫
δG u∇u · n̂dσ = 0.

• Therefore the cost C[u] is 0, therefore u is constant.

If it’s an inequality, C[u] must decrease forever.

Example: Unit cube [0, 1]×[0, 1]×[0, 1], intial condition u(x, y, z, 0) = u1 cos(πx) cos(2πy) cos(3πz)+
u0

• Note that the boundary does satisfy ∇u · n̂|δG = 0:

• Notice that ∇u = 〈K sin(πx), L sin(2πy),M sin(3πz)〉 for some messy constants, and
those are all 0 at x, y, z ∈ {0, 1} (the boundaries)

• Also, we can solve this equation ut = ∇2u:

– Note that uxx = −π2(u − u0), uyy = −4π2(u − u0), uyy = −9π2(u − u0), so
∇2u = −14π2(u− u0)

– du
dt = 1− 4π2(u− u0)

– du
(u−u0) = −14π2dt

– ln(u− u0) = −14π2t+ C

– u = u0 + De−14π2t. Only D = u1 cos(πx) cos(2πy) cos(3πz) satisfies initial
conditions.

– So u = u0 + u1 cos(πx) cos(2πy) cos(3πz)e−14π2t

• We see also that energy is conserved, or that E[u] =
∫∫∫

G u(x, y, z, t) =
∫∫∫

G u0 +

u1[
∫ 1

0 cos(πx)]× [
∫ 1

0 cos(2πy)]× [
∫ 1

0 cos(3πz)] = u0, since the factors (we can separate
into them easily) are zero on this [0, 1] interval.
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• Finally C[u] = 1
2

∫∫∫
G[∇u]2dx for u = u0 + u1 cos(πx) cos(2πy) cos(3πz)e−14π2t de-

creases over time approaching (but in general not hitting) 0, since [∇u] is some
function u1e

−14π2t[−π sin(...) cos(...) cos(...) + ..], and [∇u]2 is u2
1e
−28π2t times some-

thing less than one. The integral is therefore less than u2
1e
−28π2t, and trends toward

zero.

3.7 Laplace Equation

Motivation: Soap bubble created over an (arbitrary) wire loop. Physics dictates this is of
smallest area (minimal area surfaaces).

Laplace’s equation ∇2u = 0

Setup:

• Disk D = {(x, y) ∈ R2|x2 + y2 ≤ R2}

• Function h(x, y) > 0 gives height of the wire at any point on δD.

• So what is the function u(x, y) with u|δD that describes the soap bubble?

• Note that area is A[u] =
∫∫
D

√
1 + ( δuδx)2 + ( δuδy )2dxdy

– TODO: Re-learn surface integrals again!

• Lower bound on A[u] is necessarily πR2, since
√

1 + ( δuδx)2 + ( δuδy )2 ≥
√

1, and D is of

area πR2.

• Upper bound on
√

1 + ( δuδx)2 + ( δuδy )2, if u is super spiky, I guess:

– Start with known theorem: Holder inequality : |
∫∫
D f(x, y)g(x, y)dxdy| ≤√∫∫

D f(x, y)2dxdy
√∫∫

D g(x, y)2dxdy

– Set f =
√

1 + ( δuδx)2 + ( δuδy )2 ≡
√

1 + 〈 δuδx ,
δu
δy 〉 · 〈

δu
δx ,

δu
δy 〉

≡
√

1 +∇u · ∇u (written as
√

1 + [∇u]2)

– Set g = 1

– Then A[u] =
∫∫
D fgdxdy ≤

√∫∫
D(
√

1 + [∇u]2)2dxdy
√∫∫

D(1)2dxdy

=
√∫∫

D(1 + [∇u]2)dxdy
√
πR2

– Square both sides and divide by πR2 to get A[u]2

πR2 ≤
∫∫
D[1 + [∇u]2]dxdy =

πR2 +
∫∫
D[∇u]2dxdy

– So we find our upper bound: 0 ≤ A[u]2−πR2

πR2 ≤
∫∫
D[∇u]2dxdy
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• The upshot: We have to choose a u bounded by the wire that makes A[u] as close to
πR2 as possible.

• We can make last quiz’s cost functional C[u] = 1
2

∫∫
D[∇u]2dxdy (look familiar?) as

small as possible.

• The main idea of nudges: a 1D function f(x) is at a minimum at x0 if f(x0 + η) >
f(x0) for small x0.

• Instead of a bump η, we’ll use a function bump (in display, looks almost like a
Dirac delta) that distorts our function u, but still η = 0 around δD to maintain our
conditions.

• So a “minimizing” function (? that minimizes C[u] on this loop? ) u, with a minimum
at u0(x, y) will necessarily be a minimum if M = 0 for C[u0(x, y) +Mη(x, y)]. This
means d

dM |M=0C[u0(x, y) +Mη(x, y)] = 0

• Since C[u] = 1
2

∫∫
D[∇u]2dxdy We can find dC

dM at 0:

– ∇[u0(x, y) +Mη(x, y)] = ∇u0(x, y) +M∇η(x, y)

– ∇[u0(x, y)+Mη(x, y)]2 = ‖∇u0(x, y)‖2+M2‖∇η(x, y)‖2+2M∇u0(x, y)·∇η(x, y)

– Integrating the above and dividing by 2 we we C[u0(x, y) +Mη(x, y)] = C[u] +
M2C[η] +M

∫∫
D∇u0(x, y) · ∇η(x, y)

– At M = 0, dC
dM =

∫∫
D∇u0(x, y) · η(x, y)

– Since we know this is 0, then we know
∫∫
D∇u0 · ∇η = 0

– So at M = 0, the derivative w.r.t. M is 0, and therefore
∫∫
D∇u0 · ∇η = 0

• Now we use this to prove that our minimizing function u0 obeys Laplace: ∇2u0 = 0

– If we have a mix of various ∇ equations, it’s often useful to see what we pieces
we can play with by using the product rule for gradients: ∇· (η∇u0) = η∇2u0 +
∇u0 · ∇η.

– Also, we have the divergence theorem
∫∫
D∇V =

∫
δD Vr. (I suppose Vr substi-

tutes for V · n̂).

– So integrate everything over D:
∫∫
D∇ · (η∇u0) =

∫∫
D η∇

2u0 +
∫∫
D∇u0 · ∇η.

– First term is
∫
δD η∇(u0)rdl by Divergence, but η → 0 near δD, so it’s 0. Third

is 0 by previous result.

– So
∫∫
D η∇

2u0dxdy = 0 for ANY bump function η. Then if ∇2u0 6= 0 at some
point, we can design an η, say a Dirac delta, that makes η∇2u0 6= 0 there, and
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0 elsewhere. But since
∫∫
D η∇

2u0dxdy = 0 always, this means that ∇2u0 = 0
everywhere!

• Just like making infinitesimal changes to functions in calcuus, this whole idea of
“bumping” a functional forms the basis of calculus of variations, which is calculus
on functionals. We learned that any function that minimizes C[u] with fixed boundary

values h(x, y) on δD, that Laplace’s equation ∇2u = 0 holds. Solutions of Laplace’s
equation are called harmonic functions.

To find a solution for Laplace, use technique of spherical averages:

• Around any point P , fix an r and the corresponding disk D = {(x, y) ∈ R2|(x −
Px)2 + (y − Py)2 ≤ r2}

• The average of u on that boundary δD is then U(r;P ) = 1
2πr

∫
δD(P,r) udl

• How do we find how this function changes (derivative) with respect to r? GOTCHA:
Can’t crank through using r directly since r is in the limits of integration! Solution:
fix r and integrate over θ.

– Set δD(P, r) = {(Px + r cos(θ), Py + r sin(θ)}.

– Then U(r;P ) = 1
2πr

∫ θ=2π
θ=0 u(Px + rcos(θ), Py + r sin(θ))rdθ.

– (Note: dl = rdθ, so the r sneaks in there.

– Since the integral is over θ, cancel r:U(r;P ) = 1
2π

∫ θ=2π
θ=0 u(Px + rcos(θ), Py +

r sin(θ))dθ.

– So we want U ′(r;P ) = 1
2π

∫ θ=2π
θ=0

d
dru(Px + rcos(θ), Py + r sin(θ))dθ.

– Notice this is ∇u(Px + rcos(θ), Py + r sin(θ)) · 〈cos(θ), sin(θ)〉

– That means we can use the divergence theorem as U ′(r;P ) = 1
2πr

∫
δD(P,r)∇[u]rdl =

1
2πr

∫∫
D(P,r)∇

2udxdy

– The last term is 0 by supposition of the Laplace condition, so U ′(r;P ) = 0

• So the average is constant in r, which means by shrinking limr→0+ U(r;P ), we have
to get u(P ). The mean value property of a harmonic (∇2u = 0) function u says
that the point’s value is the average of the values around it.

• Logically, this means that either the whole function is constant, or that the max
(min) has to occur on a boundary.

• This “average of the surrounding circle” has to extend to surrounding disks too:

– 1
2π δD(P,r)

∫
udl = ru(P ) is the integral over a circle of radius r.
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– Integrating all of those from r = 0 to r = r0: u(P )
∫ r=r0
r=0 rdr = u(P )

r20
2

– But also equals 1
2π

∫ r=r0
r=0 [

∫
δD(P,r) udl]dr = 1

2π

∫∫
D(P,r0) udxdy

– So u(P ) = 1
πr20

∫∫
D(P,r0) udxdy. So u(P ) is the average of the u-values of the

disk too.

Example: Using mean value of z = 1
2 sin(2θ) + 2 around the circle of radius 1:

• By mean value theorem, u(0, 0) = 2 (substitute directly) should be the same as
1

2π

∫
δD udl

• 1
2π

∫ θ=2π
θ=0 [1

2 sin(2θ) + 2]dθ = 1
2π [−1

4cos(2θ) + 2θ]|θ=2π
θ=0 = 2.

3.8 Approximating Laplace

Main idea: Most PDEs don’t have exact solutions. Even approximate solutions often need
to be tailored to the particular PDE. Two numerical solutions in the toolkit include:

• finite difference method: Discretize the space and use the spherical (surrounding
points) average property of harmonic functions.

• Rayleigh-Ritz variational method: Guess a solution with unspecified parameters
and minimize the cost function over those parameters

Example for Finite differences: Imagine we’re on a lattice of square size h with
P1, P2, P3, P4 in the N,W,S,E positions around point (x, y). What is u?

• Tool: use Taylor approximation f(x+ h) ≈ f(x) + hf ′(x) + h2 f
′′(x)
2 , h 6= 0

• This means u(P1) = u(x0, y0+h) ≈ u(x0, y0)+huy(x0, y0+h)+h2 uyy(x0,y0+h)
2 , u(P3) =

u(x0, y0 − h) ≈ u(x0, y0)− huyf(x0, y0 − h) + h2 uyy(x0,y0−h)
2 , similar for P2, P4.

• Adding these together yields 1
4 [u(P1) +u(P2) +u(P3) +u(P4)] = u(x0, y0) + 2

4h
2∇2u,

and since ∇2u = 0 in this setup, u(x0, y0) is the average of its neighbors.

• This should remind us of the mean-value property over circles and disks for these
Laplace setups: u(x, y) = 1

2πr

∫
C((x,y),r)⊂D udl = 1

πr2

∫
D((x,y),r)⊂D udσ

• But big idea: We aren’t limited to immediately surrounding points. We can extend
this over the whole grid (reaching, say, known Dirichlet boundary conditions) and
solve for the unknowns, if we have enough information! (matrix algebra).

Example:If our grid looks like
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h4 h3 h2 h1

h5 u2 u1 h12

h6 u3 u4 h11

h7 h8 h9 h10


• We can, express, e.g. u3 = h8+u2+u4+h6

4 and similar for other u1, u2, u4

• And multiply to 4u3 = u4 + u2 + h6 + h8 and similar

• Define ~u =


u1

u2

u3

u4

, ~h =


h12 + h2

h5 + h3

h6 + h8

h11 + h9

, write A~u = ~h, with A =


4 −1 0 −1
−1 4 −1 0
0 −1 4 −1
−1 0 −1 4


• With boundary conditions in the unit square u(x, 0) = u(0, y) = 0, u(x, 1) = 3x, u(1, y) =

3y this lets us get the value of all the hi and plug into ~h to get =


4
1
0
1



• Find the matrix inverse and solve to get ~u = 1
3


4
2
1
2


• This suggests u(2

3 ,
2
3) ≈ u1 = 4

3 , u(1
3 ,

2
3) ≈ u2 = 2

3 ...

• From there, we hand wave to get exact solution u(x, y) = 3xy. (Presumably, a
computer interpolates this? )

• Without an exact solution, you can shrink h and solve bigger and bigger matrix
problems.

Finite differences work well for a square D, though it can be extended to rectangles and
disks. But for irregular shapes, we use Rayleigh-Ritz technique.

Example for Rayleigh-Ritz technique.

• Setup, circle interior: ∇2u = δ2u
δx2

+ δ2u
δy2

= 0, x2 + y2 < 1. “u is harmonic inside disk
D”

• Setup, circle boundary: u(x, y) = x2, x2 + y2 = 1. “u equals x2 on δD”

• Main idea: We want to find the u that minimzes C[u] = 1
2

∫∫
D[∇u]2dxdy while

maintaining u = x2 on δD.

• Restated: Among set of D-situated differentiate functions F , find u ∈ F that has the
smallest cost.
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• Tactic: Pick a parametrized function that fits, and tweak the parameters to minimize
cost.

• So, guess u looks like v(x, y) = x2 + a(x2 + y2 − 1).

• Then C[v] = C[x2 + a(x2 + y2 − 1)] = 1
2

∫∫
D[x2 + a(x2 + y2 − 1)]2dxdy

• Call the integrand [∇v]2. Since ∇v = 〈2x(1 + a), 2ya〉, [∇v]2 = ∇v · ∇v = 4x2(1 +
a) + 4y2a2

• To integrate over the circle D = {x2 + y2 ≤ 1}, switch to polar x = r cos(θ), y =
r sin(θ), and churn through to get C[v] = π

2 ((1 + a)2 + a2) This is minimized at
a = −1

2

• Checking v(x, y) = x2 − 1
2(x2 + y2 − 1), we see that:

– ∇2v = 2 +−2 = 0 everywhere.

– x2 + y2 = 1⇒ v = x2

– Pretend we know u and minimize 1
2

∫∫
D[∇(v − u)]2dxdy:

– = 1
2

∫∫
D[∇(v − u)] · [∇(v − u)]dxdy

– With product rule ∇(f∇g)− f∇2g = ∇f · ∇g

– And divergence rule
∫∫
D∇(f∇g) =

∫
δD f∇g · n̂dl

– We get = 1
2

∫
δD(v − u)∇(v − u) · n̂dl − 1

2

∫∫
D∇(v − u)∇2(v − u)

– Since v − u = 0 on δD, the first term is 0.

– Since ∇2(v − u) = ∇2v −∇2u = 0 inside the disk, the second term is zero.

• Therefore the cost is zero, which can only be true if v = u!

4 Chapter 4 - Transform methods

4.1 Fourier Transforms

Main idea:

• We use identity eint = i sin(nt) + cos(nt).

• We have a signal composed of amplitudes cn at frequencies n: s(t) =
∑n=∞

n=−∞ ani sin(nt)+
bn cos(nt) =

∑n=∞
n=0 cne

int for a cn composed of an, bn (the e-based format is equiva-
lent but easier to integrate). This coefficients of sin, cos are called a Fourier series

• Fourier’s trick: If you multiply signal s(t) =
∑∞

n=−∞ cne
int by a particular e−imt

and integrate, you extract cm since cn = 1
2π

∫ t=2π
t=0 s(t)e−imtdt =

∫ t=2π
t=0 ei(n−m)t = 1 if
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m = n and 0 otherwise (since eint = i sin(nt) + cos(nt) and those each integrate to 0
over a full period).

• This means we can extract frequencies cn or (“source”?) ŝn as ŝn(t) = 1
2π

∫ t=2π
t=0 s(t)e−int,

with s(t) =
∑∞

n=−∞ ŝne
int as the full signal.

• And since n gives us integer frequencies, our Fourier Transform says “given a
signal, integrate over the whole time period to get the source amplitude at a given
frequency”: ŝ(ω) = 1

2π

∫ t=∞
t=−∞ s(t)e

−iwtdt. TODO: Why did we switch from t ∈ [0, 2π]
to t ∈ R here? Note: We only use R as our domain from here on out, not t ∈ [0, 2π].

• The inverse is just the definition of s(t) =
∑∞

n=−∞ cne
int expressed over a continuum

of frequencies: s(t) =
∫∞
w=−∞ ŝ(ω)eiwtdω: “given a source set of amplitudes, integrate

over the whole frequency spectrum to get our result signal”

Example: Contribution of amplitude, frequency to signal strength

• If we’re looking for the strength of a signal based on sin or cos, integrating over 2π
doesn’t do since that would be zero.

• Therefore, we use “root mean square average strength” measure srms =
√

1
2π

∫ t=2π
t=0 [s(t)]2dt

– Say there’s a signal s(t) = 2 sin(3t) − cos(t). Which part contributes more to
the strength?

– Temporarily relabel amplitudes as w1, w2 so s(t) =
√

1
2π

∫ t=2π
t=0 [w1 sin(3t)− w2 cos(t)]2dt.

– Rewrite using identities sin(at) = eiat−e−iat
2i , cos(at) = eiat+e−iat

2

– ...(churn through) Everything ends up being paired up into sines and cosine
terms (eliminated over 0 to 2π integral) except (w1

−2
2i )2 + (w2

2
2)2, and we end

up with srms =
√

1
2(w2

1 + w2
2)

– Takeaway: Only amplitude contributes to signal strength, not frequency

• So signal stregth of s(t) is
√

1
2π

∫ t=2π
t=0 [s(t)]2dt =

√
1

2π

∫ t=2π
t=0 (

∑∞
m=−∞ cm)(

∑∞
k=−∞ ck) =√∑∞

k=−∞ cnc−n due to integral being zero for ei(m+k)t,m+ k 6= 0 terms

Using this to actually in solving PDEs: apparently for one example, we can use the Fourier
transform of a function, find out its solution, then transform that back to the original
domain. (Does this work just some of the time?)

• Setup: The wave equation utt = ∇2u actually does apply to (I suppose?) an infinitely
long string over x.
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• Other parameters: Intial shape u(x, 0) = g(x) on a still ut(x, 0) = 0 wire that tapers
to zero on either end: limx→±∞g(x) = 0.

• (Note that this only looks like Fourier if x is like time.)

• û(ω, t) = 1
2π

∫
R u(x, t)e−iωxdx

• To find out what ûtt is, first consider δ2

δt2
û = 1

2π

∫
R utt(x, t)e

−iωxdx. (Note: This also
equals ûtt, the transform of utt, since the variable t isn’t used elsewhere.)

• And (the trick!) ûtt = ûxx by utt = uxx, so this = 1
2π

∫
R uxx(x, t)e−iωxdx

• And by integration by parts, with U = e−iωx, V = uxx, we have = 1
2π [e−iωxux|∞−∞ −

(−iω)
∫
R ux(x, t)e−iωxdx]. The first term is zero from the boundary conditions ( I

guess if u→ 0 then ux → 0 too? I suppose we can assume this for non-insane initial
conditions)

• Repeating the process on the second term, we get ûtt = 1
2πω

2
∫
R(x, t)e−iωxdx, which

suggests δ2û
δt2

= −ω2û

• WIth the boundary conditions û(ω, 0) = ĝ(ω) (the transform of the initial g(x) state
on u, and similarly û(ω, t) = 0 implies a solution of û(ω, t) = ĝ(ω) cos(|ω|t). TODO:
Why the absolute value? (especially for an even function like cosine)

So, we reduced a second-order PDE with two variables (t, x) to an ordinary one with one
variable ω. The wave solution then has a Fourier transform û(ω, t) = ĝ(ω) cos(|ω|t). With

the initial condition set as, say, g(x) = 2πu0e
−x

2

2 , we can transform g(x) to ĝ(ω), then
transform the whole thing back.

• With the identity
∫
R e
−ax2 =

√
π
a , and knowing ĝ(ω) =

∫
R g(x)e−iωxdx,, we can

complete the square to ĝ(ω) = u0

∫
R e
− 1

2
(x+iω)2− 1

2
ω2
dx

• We can sub y = x+ iω and use our identity well enough, to get ĝ(ω) = u0

√
2πe−

ω2

2

• Then, since the combined Fourier-side product is û(ω, t) = u0

√
2πe−

ω2

2 cos(|ω|t), we

can transform back with u(x, t) =
∫
R û(ω, t)eixωdω, knowing cos(|ω|t) = ei|ω|t+e−|ω|t

2

• After splitting the integrals over the positive and negative domains for the absolute

values and completing the square, we get πu0[e−
(x+t)2

2 + e−
(x−t)2

2 ]

• Apparently this is the same solution as with d’Alembert’s formula (the two sensors

going out from x at time 0 and querying at t): u(x, t) = 1
2 [g(x+ t)− g(x− t)], since

g(x) = 2πu0e
−x

2

2 .
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4.2 Fourier and the Heat Equation

Main ideas:

• The last section was solving utt = uxx, the 1D wave equation.

• This section solves ut = ∇2u, the heat equation of on a 1D rod, with initial temp
distribution g(x).

• Solution to this in a previous section, assuming a Dirac heat spike at x = 0 was
C exp{− x2

σ2t
}

• Main tactic again is to take a PDE, Fourier transform into a simpler ODE, solve,
and transform back.

• Like the radio frequency waves of the previous chapter, these Fourier transforms go
over all reals x ∈ R. So we can’t do it over time (t ≥ 0) but can over x.

OK, let’s get to it. How do the derivatives of the transformed function relate to the
transform of the function’s derivatives?

• Main Fourier transform from signal domain to frequency domain, just like before:
û(ω, t) = 1

2π

∫ x=∞
x=−∞ u(x, t)e−iωxdx.

• Then ûx(ω, t) = 1
2π

∫ x=∞
x=−∞ ux(x, t)e−iωxdx = 1

2πu(x, t)e−iωx|x=∞
x=−∞−(−iω)

∫ x=∞
x=−∞ u(x, y)e−iωxdx

by integration by parts. Assuming u→ 0 when approaching either infinity, the first
term is zero, and the second is just û, so under standard FT assumptions,

taking a FT of a derivative is just (iω) times the FT of the original: ûx = (iω)û

• This can be repeated easily, e.g. ûxx = −ω2û, or δ̂nu
δxn (ω, t) = (iω)nû(ω, t)

Solving our Heat Equation

• A-HA: And since, in this Laplace setup, ut = ∇2u ≡ uxx, then ût = −ω2û since
transforms preserve equality (TODO: did we prove they were 1-1 before?) I guess if
inv(trans(a)) = a, then they must be...

• Boundary: u(x, 0) = g(x)⇒ û(ω, 0) = ĝ(ω).

• ût = dû
dt = −ω2û⇒ û = Ce−ω

2t

• û(ω, t = 0) = ĝ(ω)⇒ û = ĝ(ω)e−ω
2t

• We then need to “undo” the transform to get our actual u in the signal domain. We
need to know g to do this.

• Assume g is a Dirac Delta at a: g(x) = δa(x).
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• Then, by the nature of the delta function, then ĝ(ω) = 1
2π

∫ x=∞
x=−∞ δa(x)e−iωxdx =

1
2πe
−iωa, just picking out the one value where the integral is nonzero, and dx = 1 for

this infinitesimal slice, basically.

• So to reverse û = ĝ(ω)e−ω
2t, we transform back

∫ x=∞
x=−∞( 1

2πe
−iωa)e−ω

2teiωxdω

• Complete the square so the exponent is −t(ω + [x−a]
2ti )2 − ( [x−a]2

4t )

• Use the identity
∫ k=∞
k=−∞ e

−ak2 =
√

π
a with k = (ω+ [x−a]

2ti ) to get u(x, t) =
√

1
4πte

− [x−a]2

4t

This F (x, t; a) =
√

1
4πt [e

− [x−a]2

4t ] turns out to be a fundamental solution of the 1D Heat

equation, in that if we have any initial “data” g(x) = u(x, 0), then we can sum over all
points a where the unit of heat is found:

More concretely, u(x, t) =
∫ a=∞
a=−∞ F (x, t; a)u(a, 0)da =

√
1

4πt

∫ a=∞
a=−∞[e− [x−a]2

4t u(a, 0)]da says

“Set a as the point where all the heat is concentrated, in amount u(a, 0). This is the initial
condition for the fundamental solution. Integrate over all of these”.
This (integral sum) obeys ut = uxx since F does!

• Note: this requires that limt→0+

√
1

4πt

∫ a=∞
a=−∞[e− [x−a]2

4t u(a, 0)]da = u(x, 0)

Example:

• If we set u(x, 0) = e−βx
2
, then we have to simply evaluate

√
1

4πt

∫ a=∞
a=−∞ u(a, 0)e−

[x−a]2
4t da =√

1
4πt

∫ a=∞
a=−∞ e

− [x−a]2
4t
−βa2da

• This requires completing the square, with steps − 1
4t [(1 + 4βt)a2 − 2ax + x2] and

eventually −1+4βt
4t [a− x

1+4βt ]
2 − βx2

1+4βt

• Applying the shift and the lemma from above, we get u(x, t) =
√

1
1+4βte

− βx2

1+4βt

• APPARENTLY (unverified) this solves ut = uxx (lots of bad looking derivatives),
and u(x, 0) = e−βx

2
(L’ Hopital’s Rule?

4.3 Practice: Fourier and Laplace

Usually, doing the FT is not hard. The inverse is hard.

Theme of this section is the Laplace equation: ∇2u = uxx + uyy = 0

Setup: Heat equation on the positive y half-plane
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• Some g(x) heat distribution on the x-axis

• Note: There’s not a unique solution to uxx + uyy = 0 in general.

– Suppose there is a solution f(x, y). Then, since this is linear, if there’s a solution
u with u(x, 0) = 0, then the solution f + u will hold.

– If u′′(y) = 0, then u = ay + b has uyy = 0 so u+ f is a solution.

– However, if u is bounded (that is, u(x, y) < B for all x, y), then there is a unique
solution (why?)

• If uxx + uyy = 0, u(x, 0) = g(x), and u, ux → 0 as x → ±∞, then we can solve the
FT û(ω, dy) = 1

2π

∫ x=∞
x=−∞ u(x, y)e−iωxdx

– ûyy = 1
2π

∫ x=∞
x=−∞ uyye

−iωxdw

– ûyy = − 1
2π

∫ x=∞
x=−∞ uxxe

−iωxdw by uxx + uyy = 0

– IBP: dV = uxx, U = e−iωx: = − 1
2π [e−iωxux|∞−∞ + (iω)

∫
uxe
−iωx]

– = − 1
2π [0 +−iω(e−iωxu)|∞−∞ − (iω)2

∫
ue−iωx]

– So d2

dy2
û = ω2û

– And if we assume a solution of form û(ω, y) = ery, then dû
dy2

= r2ery = ω2ery ⇒
r = ±|ω|

– So, we have combinations of two possible solutions for the transform of u, where
uxx + uyy = 0: A(ω)e|ω|y +B(ω)e−|ω|y

– However, if u is bounded as y →∞, then A(ω) = 0 by necessity.

To recap for the purpose of solving:

– ĝ(ω) = 1
2π

∫ x=∞
x=−∞ g(x)e−iωx by general FT.

– û(ω, y) = ĝ(ω)e−|ω|y by the solution above.

– u(x, y) =
∫ ω=∞
ω=−∞ û(ω, y)eiωxdω by general inverse FT.

– So u(x, y) =
∫ s=∞
s=−∞[ĝ(ω)e−|ω|y]eiωxdω by substitution of u(x, y)

– And u(x, y) =
∫ ω=∞
ω=−∞( 1

2π

∫ s=∞
s=−∞ g(s)e−iωs)e−|ω|yeiωxdω = 1

2π

∫
g(s)[

∫
e−iωs−|ω|y+iωxdω]ds

(So there’s no need to find ĝ(ω) explicitly.)

– The innermost integral evaluates to 2y
(x−s)2+y2

, so we’re solving

u(x, y) = 1
π

∫ s=∞
s=−∞ g(s) y

(x−s)2+y2
ds, y > 0, which obeys ∇2u = 0 on the half-

plane.
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– We also need limy→0+ u(x, y) = g(x) for all real x, which,since g(s) ≈ g(x) =
g(x)(s − x) + 1

2g
′′(x)(s − x)2..., reduces to understanding what happens to∫ u=ε

u=−ε
un

u2+y2
du for u = s − x. n ≥ 2 has no singularities, so this is all about

solving n ∈ {0, 1}, which ends up evaluating to g(x)

• To solve u(x, y) = 1
π

∫ s=∞
s=−∞ g(s) y

(x−s)2+y2
ds, with g(s) = 1 + cos(x), using cos(A +

B) = cos(A) cos(B)−sin(A) sin(B), we end up with u = 1+cos(x)e−y after expanding
and using some integral identities.

Note that for Laplace solutions, the maximum value is achieved on the boundary, at y = 0,
where e−y is maximized.

4.4 Challenge: Fourier and 3D Waves

We generalize from the 1D Fourier wave equations (relating x and some ω thing) (TODO
Read Fourier Transforms: https://blog.endaq.com/fourier-transform-basics) to n−dimensional
in trying to solve 3D (or n-D) Laplace: utt = ∇2u.

An example would be compression waves (density at 3D point ~x).

The core equations then become:

• s(~x) =
∫
~ω∈Rn ŝ(~ω) exp{i~ω · ~x}d~ω

• ŝ(~ω) = 1
(2π)n

∫
~x∈Rn s(~x) exp{−i~ω · ~x}d~x

First, develop the differential equation on the other side of the transform (meaning, of
û):

• Assume: u(~x, 0) = g(~x) goes to 0 at infinity, and ut(~x, 0) = 0.

• This means we can use the divergence theorem, I guess since the balls near infinity
are all zero flux?

∫
~x∈R3 ∇ · ~u d~x = 0⇔ lim~x→∞ ~u(~x) = ~0

• Also, we have an (actually obvious) identity in hand that helps: ∇ · [f∇h− h∇f ] =
f∇2h− h∇2f ]

• And, remember that utt = ∇2u in our setup.

• d2û
dt2

= ûtt = 1
(2π)3

∫
~x∈Rn utt exp{−i~ω · ~x}d~x

• This equals 1
(2π)3

∫
~x∈Rn ∇

2u exp{−i~ω · ~x}d~x by the Laplace setup.

• Set f = exp{−i~ω~x}, h = u, so ∇ · [e−i~ω~x∇u− u∇e−i~ω~x] = e−i~ω~x∇2u− u∇2e−i~ω~x]

• This means 1
(2π)3

∫
~x∈Rn [∇2ue−i~ω~xd~x−u∇2e−i~ω~x] +u∇2e−i~ω~x, and the bracketed part

is ∇· [e−i~ω~x∇u−u∇e−i~ω~x] by the last line. This will be zero as ~x→∞ by Divergence
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theorem.

• This also means, in this particular setup, that
∫
~x∈Rn(∇2u)e−i~ω·~xd~x =

∫
~x∈Rn u∇

2e−i~ω·~xd~x

• Since∇2e−i~ω·~x = (−i~ω)2 = −‖~ω‖2, we get d2û
dt2

= −‖~ω‖2û as the diff eq on the omega side.

• Then u =
∫
R3 ĝ cos(‖ω‖t)ei~ω·~xd~ω is the solution since anything of the formA(ω)ei~ω·~x+

B(ω)e−i~ω·~x is also expressable as C(ω) cos(‖ω‖t)+D(ω) sin(‖ω‖t) and our inital con-
ditions force C to be g and thus D to be zero.

If we have an initial density distribution g, we can transform it to the omega domain.

Here, g(x, y, z) = u0 exp{−1
2(x2 + y2 + z2)} is given so ĝ(~ω) = 1

(2π)n

∫
~x∈Rn g(~x) exp{−i~ω ·

~x}d~x

• We’re given identity
∫
x∈Rn exp{−a‖x‖2}dx = (πa )

n
2

• Recognize ‖~ω‖2 in the exponent of g: e−
1
2
‖~x‖2

• Looks like we’re completing squares again. The exponent of the product becomes
−1

2(x+ iω)2 − 1
2‖~ω‖

2

• Set q = x + iw, dq = dx and with the identity in hand, the integral becomes
u0

(2π)3
e−

1
2
‖~ω‖2 ∫ e− 1

2
q2dq = u0

(2π)
3
2
e−

1
2
‖~ω‖2 = ĝ(ω)

Putting ĝ(ω) into the inverse transform, we have u(x, y, z, t) =
∫
~ω∈R3 ĝ(~ω) cos(‖~ω‖t)ei~ω·~xd~ω

So our inverse FT ends up with the usual pattern - integral of: ĝ times “û diff eq solution”
times eiωx

Combining ĝ with u equations gives us

u = u0

(2π)
3
2

∫
R3 e

− 1
2
‖~ω‖2 cos(‖ω‖t)ei~ω·~xd~ω

≡ u0

(2π)
3
2

∫
R3 cos(‖ω‖t) exp{−1

2‖~ω‖
2 + i‖~ω‖‖~x‖ cos(φ)}d~ω

Solving this is tricky and involves moving to spherical coordinates.

• Big trick: change ~x · ~ω to ‖~ω‖‖~x‖ cos(φ) and use spherical coordinates to define ω.

– ω still integrates over all R3 but with φ declination from ~x and θ “around” ~x.
(Think of ~x pointing up like z).

– TODO: I think the Jacobian implies d~ω = ‖~ω‖2 sin(φ)dφdθd(‖~ω|)
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– The whole thing is then 2π
∫ |~ω‖=∞
|~ω‖=0 cos(‖~ω‖t)‖~ω‖2e−

‖ω‖2
2 (
∫ φ=π
φ=0 exp{i‖~x‖‖~ω‖ cos(φ)} sin(φ)dφ)d(‖~ω‖)

– Subbing u = cos(φ), the inner integral is:

∗
∫
− exp{i‖~x‖‖~ω‖u}du = − 1

i‖~x‖‖~ω‖e
i‖~x‖‖~ω‖ cos(φ)|φ=π

φ=0 = − 1
i‖~x‖‖~ω‖ [e

−ixw−eixw] =
2 sin(‖~x‖‖~ω‖)
‖~x‖‖~ω‖

∗ So the whole intergral is now

u(~x, t) = u0
‖~x‖

√
2
π

∫ ‖~ω‖=∞
‖~ω‖=0 cos(‖~ω‖t)‖~ω‖e−

‖~ω‖2
2 sin(‖~x‖‖~ω‖)d(‖~ω‖)

∗ Replace ‖~ω‖ = v. calculate cos(vt) sin(‖~x‖v) = evt+e−vt

2
e‖~x‖v−e−‖~x‖v

2i to get
1
2 [sin(v‖x‖+ t) + sin(v‖x‖ − t)]

∗ Now evaluate
∫ v=∞
v=0 ve−

v2

2 sin(av)dv

= a
∫ v=∞
v=0 e−

v2

2 cos(av)dv (IBP)

= a
2

∫ v=∞
v=0 e−

v2

2 cos(av)dv (cosine is even)

= a
2

∫ v=∞
v=0 e−

v2

2
1
2(eav + e−av)dv (Euler cosine)

= ... (Completing squares,
∫
e−a

2
2 =

√
π
a theorem) ... =

√
π
2ae

−a2
2

∗ Finally, we get u(x, t) = u0
2‖~x‖ [(‖~x‖+ t) exp{− (‖~x‖+t)2

2 }+ (‖~x‖ − t) exp{− (‖~x‖−t)2
2 }]

– We can confirm u(x, 0) = u0 exp{−‖x‖
2

2 } directly, and ut(x, 0) = 0 by a TRICK:
note that u is symmetric in t, so ut(x,−t) = ut(x, t), implying ut(x, 0) = 0!

– To confirm utt = ∇2u, we define h(z) = u0ze
− z

2

2 , making u = h(‖x‖+t)+h(‖x‖−t)
2‖x‖

– Since u(~x, t) depends only on ‖x‖ = r, spherical coordinates’ formula can be
used: ∇2u = 1

r2
δ
δr [r2 δu

δr ]

– Remember h is a one-dimensional function.

– ut = h′(r+t)−h′(r−t)
2r , utt = h′′(r+t)+h′′(r−t)

2r

– ur = rh′(r+t)+rh′(r−t)−h(r+t)−h(r−t)
2r2

– Don’t go for urr! Instead: δ
δr [r2ur] = r(h′′(r+t)+h′′(r−t))

2

– Multiplying by 1
r2

shows they are equal.

Results:

• 1D waves (u(x, t) = g(x+t)+g(x−t)
2 )
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• 3D (compression) waves (u(~x, t) = u0
2‖x‖ [(‖x‖+ t) exp{ (‖x‖+t)2

2 }+ (‖x‖ − t) exp{ (‖x‖−t)2
2 }]

Starting with bump g(x) = u0e
−x

2

2 and similar in 3D, there are some similarities:

• Both are bounded between 0 and 1. (Use L’Hopital’s for the 3D case to be sure)

• Both have disturbances travel at finite speed t

Differences:

• The 1D wave is a translation of the original function. The 3D wave has ‖x‖ in the
denominator, so it flattens out.

• The 1D wave with this setup is always positive. The 3D wave can be negative
(rarefied, in compression terms)!

4.5 Schroedinger’s Equation

This uses the Fourier transform to show an isomorphism between a probability density
over position (x) with that over v velocity (p), and shows that the other side of the FT
can have intrinsic meaning.

Note: Much of this requires complex conjugation ((a+ bi)∗ = a− bi).

4.5.1 Complex Conjugation tips:

• (a+ b)∗ = a∗ + b∗. Separate the real and imaginary and it’s clear.

• (a× b)∗ = a∗ × b∗. Mulitply it out and it’s clewar.

• (eit)∗ = (e−it)∗. Change eit to cos(t) + i sin(t) and it falls right out.

• ‖a+bi‖2, the squared “length” of tjhe complex number, is a2 +b2 or (a+bi)(a−bi) =
(a+ bi)(a+ bi)∗

• (f ′(t))∗ = ((f∗)′(t)). Substitute f∗ for f in the limit definition and it’s clear.

• This makes sense since it looks like any linear transform (incl. derivative) of conju-
gation looks to be the conjugate of the transform.

• FT F (ω) of (f∗)(x) ends up being F ∗(−ω).

4.5.2 Main ideas of Schroedinger’s equation

• Equation is ut = i
2∇

2u.

• The “signal” (u) side sees ‖u(x, t)‖2 as probability particle is near x at time t.
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• The transformed “motion” (û) sees ‖û(p, t)‖2 as probability particle’s velocity vector
is near ~p at time t.

• This works because, for expected position X =
∫∫∫

x x‖u(x, t)‖2, change in expected

position is expected change in position is expected velocity: dX
dt =

∫∫∫
~p∈R3 ~p(2π)3|û(p, t)|2d~p

TODO come back here 12/25/22

Initial conditions u(x, 0) = g(x) require.

•
∫∫∫

R3 |g(~x)|2d~x = 1, to be a legit probability distribution at time 0.

• Knowing ut = i
2∇

2u means u∗t = − i
2∇

2u. Then d
dt [
∫∫∫

R3 |u|2d~x] = d
dt [
∫∫∫

R3 uu
∗d~x] =∫∫∫

utu
∗ + uu∗t = i

2

∫∫∫
u∗∇2u − u∇2u∗ = ∇ · (u∗∇u − u∇u∗) (Note: This is an

identity - take ∇(f∇g − g∇f) and see!)

• So If u,∇u → 0 go to zero near infinity, then we can use divergence theorem (since
any ball would be zero on the surface). So I suppose this means

∫∫∫
R3 |u|2d~x] is

constant (and can therefore be adjusted to 1?) Those are the three conditions for
using u(x, 0) = g(x) as an initial distribution.

Step one: Solve the diff eq on the û side.

• û(p, t) = 1
(2π3

∫∫∫
R3 u(~x, t) exp{−i~p · ~x}d~x by standard FT.

• Taking d
dt of both sides and doing the ut = i

2∇
2u substitution, cranking through ∇s,

yields dû
dt = − i

2‖~p‖
2û(~p, t) , since the double derivative of the exp spits out (−i~p·−i~p)

• So û(~p, t) = ĝ(~p)e−
i
2
‖~p‖2t

Aside: The Dirac Delta function δ

• Definition : (Also works in R3:
∫ x=∞
x=−∞ f(x)δ(x− a) = f(a))

• Fourier transform is δ̂(~p) = 1
(2π)3

∫∫∫
~x∈R3 δ(~x − ~a) exp{−i~p · ~x}d~x = 1

(2π)3
e−i~p·~a.

Straightforward use of delta’s main feature.

• Inverse of the transform is the δ(x− a) = 1
(2π)3

∫∫∫
~p∈R3 exp{−i~p · (~x− ~a)}d~p

• This creates Plancherel’s Theorem:
∫∫∫

R3 |g(x)|2 = (2π)3
∫∫∫

R3 |ĝ(p)|2, since

– FT of g is ĝ(~p) = 1
(2π)3

∫∫∫
~x∈R3 g(p)exp{−i~p · ~x}d~x

– |g(x)|2 = g(x)(g(x))∗

– So (2π)3
∫∫∫

R3 |ĝ(p)|2 =
∫

(
∫
FT (g))(

∫
FT (g))∗

– (FT (g))∗ =
∫
g∗eiytdy, so

∫
(
∫
g(x)g∗(y)(

∫
exp{ip ·(y−x)) =

∫ ∫
g(x)g∗(y)δ(y−

x)dydx =
∫
g(x)g∗(x) There were some (2π)3s here too.
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– This shows that (2π)3
∫∫∫
‖û(p, t)‖2dp = 1, and it’s something of a probability

density too.

Expected position is then ~X(t) =
∫∫∫

~x|u(x, t)|2d~x

• Used together with ut = i
2∇

2u

• and a divergence theorem (when u and∇u are 0 at inifity):
∫∫∫

~x∇·~V d~x = −
∫∫∫

~V ~dx

• Gives us that dX
dt = d

dt [
∫∫∫

~x|u(x, t)|2d~x] =
∫∫∫

p ~p(2π)3|û(p, t)|2d~p, or that the change

in expected position is the expected value of the velocity, and the transform,
∫∫∫

p ~p(2π)3|û(p, t)|2d~p
measures the likelihood of finding the particle with velocity near p at time t.

Example: If we start with a known velocity distribution, ĝ(p) = 1

(2πσ)
3
2

exp{−π‖p−p0‖2
2σ2 }, σ <<

1 , which looks like a “normal” about point p0 with some σ2 variance:

• Glue it on to û = e−
i
2
‖p‖2t

• Calculate expected position P̂ =
∫∫∫

p p(2π)3|û(p, t)|2dp

• Calculate variance V ar(p̂) =
∫∫∫

p(p − P )2(2π)3|û(p, t)|2dp = 3
2
σ2

π2 (requires some

identities)

• Transform û back to get Schroedinger wave function u(x, t) = 1

(2πσ)
3
2

∫∫∫
p exp{−π‖p−p0‖2

2σ2 −
i
2‖p‖

2}

• For this one, take p0 = ~0, a(t) = π
a2

+ it

• Complete the square to get u(x, t) = 1

[σa(t)]
3
2

exp{− ‖x‖
2

2a(t)}

• The variance of the position is then 3
2
σ2|a(t)|2

π2 by our result before (replacing σ with
σa(t)

• And the product of the two variances (3
2
σ2|a(t)|2

π2 )(3
2
σ2

π2 ) ends up as 9
4(1 + σ4

π2 t
2)

• This is always positive and goes up with time. Therefore, the Heisenberg un-
certainty principle says the product of the variances in position and velocity is
alwways positive.

• Perhaps this says “you can’t know both position and velocity with surety at the same
time”?
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4.6 Conformal Maps

Visual: a conformal map is like flattening the Earth map out into a circle with a pole at
the center.

Main ideas:

• Solving Laplace on a disk D = {(u, v) : u2 + v2 ≤ 1} can’t use Fourier transform,
since D has an edge.

• Also, we can find f(0, 0) for any harmonic (mean-value) function with f(0, 0) =
1

2π

∫
δD gdl, if g is the boundary of the disk D.

• So if we rearrange points using conformal maps (maps that preserve angles) and
stereographic projection (move points in a figure along lines mapping to a single
focus, which I think makes a conformal map) then we can reshape D and point (x0, y0)
to the center of a similar disk.

• The process for this, starting from unit disk D:

– First, a translated disk lying parallel to y = 0, axis, centered at (0,−1, 1)

– Then, a hemisphere via a stereographic projection.

– Then, the half plane H via projecting through the north pole and the point to
the plane

– Then, the half plane to itself, to align our (x0, y0) to something like (0, 2)

– Then, reversing all these to have a disk with our point at the center

• We map from (u, v) to (x, y) like (x(u, v), y(u, v)).

• We have some function on each, representable as either f(x(u, v), y(u, v)) or f̃(u, v)

Main setup:

• We map from (u, v) to (x, y) like (x(u, v), y(u, v)). (Note that this chapter has a lot
of mapping to e.g. (x, y, 0) or (x, 0, z), but that’s still 2d-to-2d.)

• We have some function on each, representable as either f(x(u, v), y(u, v)) or f̃(u, v)

• We need to make sure that f is harmonic (fxx + fyy = 0) implies that f̃ is too.

• We can do this by ensuring xu = yv and xv = −yu. Why?

– First, if f̃(u, v) = f(x(u, v), y(u, v)), then ∇2f̃ = ˜fuu + ˜fvv.

– Take the tricky two-step derivatives along u through x and y: f̃u = (fxxu+fyyu),
so f̃uu = d

du f̃u = d
du(fxxu) + d

du(fyyu) = ( d
dufx)xu + fx( d

duxu) + ( d
dufy)yu +

fy(
d
duyu) = (fxxxu + fxyyu)xu + fxxuu + (fyyyu + fyxxu)yu + fyyuu.
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– Similarly, f̃vv = (fxxxv + fxyyv)xv + fxxvv + (fyyyv + fyxxv)yv + fyyvv.

– So ∇2f̃ = [x2
u+x2

v]fxx+[y2
u+y2

v ]fyy+2fxy[xuyu+xvyv]+fx[xuu+xvv]+fy[yuu+
yvv]

– If xu = yv and xv = −yu and fxx + fyy = 0 then this is ([y2
u + (−yv)2][fxx +

fyy] + (2fxy[yvyu+−yuyv]) + (fx[yvu+−yuv]) + (fy[−xvu+xuv]) = 0 + 0 + 0 + 0.

– Notice also that f is harmonic, since xuu + xvv = yvu − yuv = 0, similar for
yuu + yvv

An example harmonic function would be f̃ = (x(u, v), y(u, v)) = (eu cos(v), eu sin(v)),
where it can be easily validated that xu = yv, xv = −yu.

You can prove the angles are the same before and after a harmonic map with xu = yv, xv =
−yu by:

• Starting with two curves (u1(t), v1(t)), (u2(t), v2(t)) meeting in the plane at t=0, with
their tangent vectors (pointwise derivatives ~t1, ~t2.

• Defining cos(θ) with the dot poduct formula.

• Define cos(θ′) as meeting of image (x(u1(t), v1(t)), y(u1(t), v1(t)) and its u2, v2 mate.

• We can see these are equal if we build a matrix. We see d
dt |t=0[x(u1(t), v1(t))] =

xuu
′
1(0) + xvv

′
1(0) and the like to a derivative matrix

(
xu xv
yu yv

)
〈u′j(0), v′j(0)〉

• Note that this matrix A also equals

(
yv −yu
yu yv

)
, and tehrefore ATA = I(y2

u + y2
v)

• After a bit more linear algebra, the A−transformed θ′ in the dot product formula
ends up equaling the original cos(θ)

So the derivative conditions mean we preserve angles under that kind of map. There’s a
simple (but not only?) way to make such a map by sliding any three points along lines
with t = 0 (starting point) to a common focus terminus at t = 1. The proof ends up
being:

• Set each of three points ~pj(t) = (1− t)~pj + t~c

• Use the dot product formula cos(θ(t)) = ... using vectors ~p2(t)− ~p0(t) and ~p1(t)− ~p0(t)

• Show that this equals cos(θ(0)), or the same setup with ~p2 − ~p0 and ~p1 − ~p0

The sequence of mappings from initial disk to elevated disk D to unit hemisphere S+

(sitting on origin, top at (0, 0, 2) to half plane H and back basically are just algebra.

Example: H to S+ : x2 + y2 + (z − 1)2 = 1
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• Line between (x, y, 0) (0, 0, 2) is t〈x, y, 2(1− t)〉, t ∈ [0, 1]

• The point touching S+ satisfies (tx)2 + (ty)2 + (2(1− t)− 1)2 = 1

• Simplify to find t = 4
x2+y2+4

, and substitute into line t〈x, y, 2(1− t)〉

• Thus (x, y, z) on S+ maps to 1
x2+y2+4

〈4x, 4y, 2x2 + 2y2〉

• A similar stragegy gives us inverse ( 2x
2−z ,

2y
2−z , 0) going from S+ to H.

Idea for mapping from S+ to a disk (x, 0, z) : x2 + (z − 1)2 ≤ 1 is to draw a line from
(0,−1, 1) the sphere, and see where we hit the y-parallel disk centered at (0, 0, 1).

• A similar strategy: Create the line parametrized by t, see where t satisfies the inter-
section condition.

• We end up with map from S+ to disk as (x, y, z)→ ( x
y+1 , y,

z+y
y+1)

• The inverse, from a similar path, is 1
x2+(z−1)2+1

〈2x, 1− x2 − (z − 1)2, x2 + z2〉

Combining all of these maps, including the map that elevates and rotates a unit disk to

(x, 0, z) inD : (x = u, z = 1+v), maps (u, v) on the unit disk to (x, y, z) = 1
u2+(v−1)2

〈4u, 2(1− u2 − v2), 0〉 ,

with an inverse of (u, v) = 1
x2+(y+2)2

〈4x, x2 + y2 − 4〉

One final map before we can go from unit disk to itself fully: moving (x0, y0) → (0, 2) on
H:

• Note: You can shift left/right without changing any angles. (Can’t shift along y,
since 0 is the edge of the universe)

• Note: You can scale without changing any angles. Can probably confirm this very
easily in cross product theorem, but it’s clear.

• So, shifting the coordinate over for x and scaling it for y yields (verifiably) conformal

(x, y)→ (2(x−x0)
y0

, 2y
y0

)

So if we wanted to find the value on the unit disk of some harmonic function f of f(0, 0)
with a known boundary condition g(u, v) = u2, we could use the mean value property and
average over the boundary.

Instead, if we wanted to know f(0, 1
2), we could:

• Make a conformal transformation of (0, 1
2) to (0, 0)

• Know that that will become a similar subdisk in the original disk with the mean
value property still holding.
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• Find the condition on the edge of that destination disk knowing the original g on the
first disk.

• Integrate that around the edge of that destination disk.

Knowing the mapping ( 3u
u2+(v+2)2

, 2u2+2v2+5v+2
u2+(v+2)2

) takes (0, 0) back to (0, 1
2) means that we

can integrate r cos2(θ) = [ 3u
u2+(v+2)2

]2 around the disk to get 3
8 on that disk, and thus the

original.

4.7 The Laplace Transform

Main idea: Laplace is similar to Fourier (transform some PDEs into ODEs), but can handle
a separate domain.

• Fourier transforms are from x ∈ (−∞,−∞). (Note: what about the [0, 2π) ones from
the first chapter?). Laplace handles x ∈ [0,∞), better suited actually for time t!

• Requirements:

– L[f ](s) should be an integral, to handle the derivatives of diff eqs

– Integration limits should be 0,+∞

– L should be linear in f(t).

– Finally, we need a handy derivative mapping like Fourier’s F [f ′] = (iω)F [f ]

• Laplace transform of f(t), operating on s, is L[f ](s) =
∫ t=∞
t=0 K(t; s)f(t)dt.

• s is a variable like Fourier’s ω, and K(t; s) is called the kernel.

• Suppose we want a derivative rule like : L[dfdt ](s) =
∫ t=∞
t=0 LK(t; s)f ′(t)dt = sL[f ](s)+

...

• If f(t),K(t; s) → 0 as t → ∞, then selecting K(t; s) = e−st and therefore L[f ](s) =∫ t=∞
t=0 e−stf(t)dt satisfies all these. (note: do integration by parts with u = e−rs, v′ =
f)

• Churning the IBP gives you L[dfdt ](s) = sL[f ](s) − f(0),L[d
2f
dt2

](s) = s(L[dfdt ](s) −
f ′(0))− f(0) = s(sL[f ](s)− f ′(0))− f(0)...

• So ultimately, our rule is L[d
nf
dtn ](s) = snL[f ](s)−

∑n−1
j=0 s

n−j−1f (j)(0)

• This means we can get rid of all the derivatives on the transformed side and solve
for the diff eq for L[f ]. (We can also handle weirdos like δ below)

Major Example to solve: Impulse kicking an oscillating spring with force α at time t0.

• Diff Eq to solve: x′′(t) + x(t) = αδ(t− t0), with Dirac δ.
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• L[αδt−t0 ](s) =
∫ t=∞
t=0 e−stαδ(t− t0)dt = αe−st0

• Taking L[x′′(t) + x(t)] = L[αδ(t − t0)] = αe−st0 , use the derivative rule to find the
left hand side is −x′(0)− sx(0) + s2L[x(t)](s)] + L[x(t)](s).

• Assuming x(0) = x0 (stretched x0 units) and x′(0) = 0 (at arest), then we see

L[x(t)](s) = αe−st0+sx0
s2+1

Note: The hard part is reversing these BACK into the original domain. The integral reverse
won’t be detailed here (it’s a lot of hard ideas, apparently.). It turns out you generally look
up the inverse Laplace transform in a table.

The Heaviside step function u(x) = {1, x > 0; 1
2 , x = 0; 0, x < 0} is included in the list,

such that L[u(t − t0]f(t − t0) = e−st0F (s), and L[u(t)] = s−1 (Since
∫ t=∞
t=0 e−stu(t)dt =∫ t=∞

t=0 e−st = −1
s − e

−st|t=∞t=0 = [0− −1
s ] = s−1)

With this table, we find that L = αL[u(t − t0) sin(t − t0)](s) + x0L[cos(t)](s) = L[αu(t −
t0) sin(t − t0) + x0 cos(t)](s), which obeys x(0) = 0, x′(0) = 0 for t0 > 0. This is a
continuous but non-differentiable function, since the “kick” changes the derivative discon-
tinuously.

4.8 Laplace Transform applications

Main motivation: RLC Circuit

• Original equation: V0(t)
L = Q′′(t) + R

LQ
′(t) + Q(t)

LC .

• After nondimensionalization, we have our main equation to solve this section: x′′(t)+
2εx′(t) + x(t) = v0 sin(ωt), ε > 0

• Looking up in the table, we have L[v0 sin(ωt)] = ωv0
s2+ω2

Main tactic: Take Laplace transform of the side with the derivaties, setting up some
L[x(t)] = f(s), do the same for the fixed side, and figure out x(t) by triangulating in the
transform table.

• General rule is L[x′(t)] = sL[x(t)]−x(0). Sub in x′′(t) or whatever for x′(t) as needed.

• L[x′′(t)] = sL[x′(t)]− x′(0) = s(sL[x(t)]− x(0))− x′(0). Can do the same for x′(t).

• Adding up, L[x′′(t) + 2εx′(t) + x(t)] = L[x(t)](s2 + 2εs+ 1) = ωv0
s2+ω2

• Then L[x(t)] = ωv0
s2+ω2

1
s2+2εs+1

. Settting ε = 0, we can get L[x(t)] = ωv0
1

s2+ω2
1

s2+1

• Doing partial fractions gets us = ωv0
1−ω2 [ 1

s2+ω2 + 1
s2+1

]

• Using the table to find L[s = sin(at)](s) = a
s2+a2

, we can work forwards to get
v0

1−ω2L[sin(ωt)− ω sin(t)](s) = v0
1−ω2 ( ω

s2+ω2 − ω
s2+1

)
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Now, the derivative trick on d
dsL[x(t)]. Suppose we’re looking for the solution to the above

when ω = 1 (and ε = 0). We end up with L[x(t)] = ωv0
1

s2+ω2
1

s2+1
= v0

1
(s2+1)2

• We know L[cos(t)](s) = s
(s2+1)

. Guess cos(t) as our x(t) and take d
ds of both sides.

• The right side becomes − s2−1
(s2+1)2

• The left side becomes d
ds

∫ t=∞
t=0 cos(t)e−stdt =

∫ t=∞
t=0

d
dse
−st cos(t)dt =

∫ t=∞
t=0 −te

−st cos(t)dt =
L[−t cos(t)]

• The Laplace transform of sine is 1
s2+1

= s2+1
(s2+1)2

• Subtracting these two yields x(t) = v0
2 [sin(t)− t cos(t)]

Another example: Instead of the wall outlet, we have a battery-operated switch tso that
x′′(t) + x(t) = v0u(t− t0) (Heaviside step function)

• The Laplace transform of the right side is L[u(t − t0)](s) =
∫
u(t − t0)e−stdt =

−1
se
−st|t=∞t=t0 = 0− (−1

se
−st0) = 1

se
−st0

• Since our solution of the left hand side is the same, (s2 + 1)L[x(t)](s) = v0
s e
−st0 ⇒

L[x(t)](s) = v0e−st0
s(s2+1)

• Partial fractions yield that v0e−st0
s(s2+1)

= v0[1
s −

s
s2+1

]e−st0

• Looking this up in the table yields that x(t) = v0u(t− t0)(1− cos(t)). So the circuit
starts at t0 and oscillates from there.

Another example: Third-order equations like θ(3)(t) + θ′′(t)− θ′(t)− θ(t) = b.

• If we assume θ(t) = 0, θ′(t) = 0, θ′′(t) = 0, then expanding quickly reveals that the
left hand is L[x(t)](s)(s3 + s2 − s− 1), exactly mirroring the θ terms in s.

• The right hand side, transforms as L[b] = b
s , so the whole equation is L[x(t)] =

b
s(s3+s2−s−1)

= b
s(s+1)(s2−1)

= b
s(s+1)2(s−1)

• By Partial Fractions, this becomes −1
s + 1

4
1
s−1 + 1

4
3s+5

(s+1)2

• We can tweak this around to −1
s + 1

4
1
s−1 + 1

4
3(s+1)
(s+1)2

+ 2
(s+1)2

and use our previous

results to get θ(t) = −b+ b
4e
t + 3b

4 e
−t + b

2 te
−t

5 Series Solutions

5.1 Power Series (Series Solutions I)

TODO: Ended here on 12/25/22
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Main idea:

• You can always render y(x) as some a0 + a1x+ a2x
2 + a3x

3...

• This means y′(x) = a1 + 2a2x+ 3a3x
2 + ... and y′′(x) = 2a2 + 6a3x+ 12a4x

2...

• When confronted with, say, y′(x) = y(x), you can directly equate those and see
a0 = a1, a1 = 2a2, a2 = 3a3, and thus an = a0

1
n! , leading to y(x) = ex.

– Note: This proves you can’t solve y′(x) = y(x) with a nontrivial, finite series.

– Also, in general, we see that solution a0e
x =

∑∞
n=0

a0
n!

• This works with finite sums too, like y′′(x) = 5x3, y′(0) = 1, y(0) = 0⇒ a0 = 0, a1 =
1, 20a5x

3 = 5x3 → a5 = 1
4 ⇒ y(x) = x+ 1

4x
5

The main idea is that
∑N

n=0 anx
n approaches the real solution as N →∞. Obviously they

are equal at N = 0, but as x→ 0, the solution seems to be more accurate.

Another idea: Using recurrence relations to solve y′(x) = y(x)

• For the ex example, you can create a recurrence relation like (n+ 1)(n+ 2)an+2 = an

• Note there are separate even and an odd cascades that land on a0 and a1 respectively.

• You can eyeball the solution as 1
2

1
n! [a0 + a1 + (−1)n(a0 − a1)].

• POWERFUL TRICK: OR you can use this an, bn POWER RECURRENCE tech-
nique

– Set an = bn
n! (so bi is “Blown up”)

– Note (n + 2)(n + 1)an+2 = (n + 2)(n + 1) bn+2

(n+2)! = bn
n! = an = bn

n! ⇒ bn+2 = bn.
So, ignoring the factorials in the denominator, b terms are equal all the way
down to a0 or a1

– However, you can hypothesize that bn = αrn, so bn+2 = αrn+2 = bn = αrn ⇒
r2 = 1⇒ r = ±1

– Thus the solution is any combo of bn = α+1n + α−(−1)n

– And with a0 = b0, a1 = b1, we can solve to get α+ = (a0 + a1), α− = (a0 − a1),
so bn = 1

2
1
n! [(a0 + a1)1n + (−1)n(a0 − a1)].

You can expand this to solve y′′(x) = y(x) most generally:

• Start with bn = 1
2

1
n! [(a0 + a1)1n + (−1)n(a0 − a1)].

• This means y(x)=
∑∞

n=0
1
2

1
n! [(a0 + a1)1n + (−1)n(a0 − a1)]xn

62



• Rearrange to get y(x) = a0+a1
2

∑∞
n=0

1n

n! x
n+a0−a1

2

∑∞
n=0

(−1)n

n! xn = a0+a1
2

∑∞
n=0

1
n!x

n+
a0−a1

2

∑∞
n=0

1
n!(−x)n

• This is just a0+a1
2 ex + a0−a1

2 e−x, or since a0 = y(0), a1 = y′(0), this is y(x) =
y(0)+y′(0)

2 ex + y(0)−y′(0)
2 e−x,

However, if we’re solving y′′(x) = −y(x), neat things happen. Follow the above steps
exactly, except

• bn+2 = αrn+2 = −bn = −αrn ⇒ r = ±i

• So our combined solution is bn = [α+i
n + α−(−i)n]

• We then end up with a±i = ± 1
2i , and bn = in

2i [1
n − (−1)n]⇒ an = in−1

2n! [1− (−1)n]

• Noting that eiθ = cos(θ) + i sin(θ), we can see that the terms with i on them above

are the series for sin(x) = (1− x3

x! + x5

5! − ...), and the real terms are that of cos

• Strangely, sin is periodic, and the infinite sum is too! Naturally, the finite sum is a
polynomial and not periodic.

5.2 Power Series (Series Solutions II)

Main idea: Centering a series at c rather than at 0 gives us flexibility (and, I think,
converges faster around that point, letting us use fewer terms). The general form: y(x) =∑∞

n=0 an[x− c]n

Example: y′(x) + xy(x) = 0, y(1) = 1

• A good choice to estimate y(0.95) would be y(x) =
∑N

n=0 an[x− 1]n, since it’s close
to .95 and we know y(1).

• Method: Writing terms as recurrence relation

– Since we’re looking around 1, write as y′(x) + [x− 1]y(x) + y(x) = 0, y(1) = 1

– y = a0 + a1[x− 1] + a2[x− 1]2 + a3[x− 1]3...

– y′ = a1 + 2a1[x− 1] + 3a2[x− 1]2 + 4a3[x− 1]3...

– [x− 1]y = a0[x− 1] + a1[x− 1]2 + a2[x− 1]3...

– By writing out terms y + [x− 1]y + y = 0 shows us an + an−1 + (n+ 1)an+1 =
0, n ≥ 1

– Dealing with the boundary cases, we can say y(x) = a0 + a1 +
∑∞

n=1((n +
1)an+1 + an + an−1)[x− 1]n = 0

– Solving for y(1) = 1, we have a0 = 1, a1 = −1
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Note: At this point, solving the recurrence relation is difficult, so they embedded
a small python script of the series centered around 1. y(0.95) converged to 0.001%

error (against real solution e−
1
2

(x2−1)) in 4 iterations of the sum (or N ∈ [0, 3]).

We can also solve the equation analytically:

• y′ + xy = 0⇒ y′

y = −x⇒
∫ dy

y =
∫
−xdx⇒ y(x) = Ce−

1
2
x2

• Ce−
1
2 = 1⇒ C =

√
e⇒

√
ee−

1
2
x2 = y(x)

• Putting this in the form y(x) =
∑∞

n=0 bnx
n means putting (−1

2x
2) in for x and

multiplying the result by
√
e. This means all odd coefficients are 0, and evens are√

e 1
(−2)n/2

1
(n/2)! = bn

With the solution in hand we can try our sum over bn and compare the analytical solution.
If we center on 0, y(0.95) converges to 0.001% error in 8 iterations: (n = 0, 2, ...14). This
is twice as many as we needed at 1 (4, above)!

Method: Convergence testing

•
∑N

k=0 ck = limN →∞ck converges if and only if ck decreases sufficiently quickly.

• If ck+1/ck < C < 1, for some constant C, this definitely converges.

• The ratio test says exactly this: if limn→∞[an+1[x−c]n+1

an[x−c]n ] = limn→∞[an+1

an
]|x− c| < 1,

the series converges.

• For example, an = in−1

2n! [1− (−1)n] converges:

– First, drop all the zero (even) terms by rewriting to
∑∞

j=0
(−1)j

(2j+1)!x
2j+1

– Apply the ratio test between cj+1x
2(j+1)+1 and cjx

2j

– | cj+1

cj
| = 1

(2j+3)(2j+2) , so this is less than one at some point regardless of x3’s

value (meaning x’s value).

– Note this converges to sin(x). I suppose the series form of sin(π4 ) would converge
faster than that of sin(π4 + 200π)

5.3 The Airy Equation

Main motivation: The block-spring system, transferring Energy back and forth between
kinetic (1

2mv
2) and potential (U(x) = 1

2kx
2) to a fixed sum total E = 1

2mv
2 + 1

2kx
2. The

turning point x0 is where v = 0 and the block switches directions. The block can never see
x > x0 in this case.

There’s a quantum version of this in which the “block” does escape this bound.
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Schroedinger’s equation rewritten: i δψδt = −1
2
δ2ψ
δx2

+ U(x)ψ(x, t).

• Separate variables by saying ψ(x, t) = X(x)T (t) and take derivatives.

• Divide by XT : iXT ′ = −1
2X
′′T + U(x)XT ⇒ T ′/T = 1

2 iX
′′/X + U(x)

• Somehow (unknown step here) we end up with ψ(x, t) = y(x)e−iEt, where y(x), a
renamed X(x), has property −1

2y
′′(x) + U(x)y(x) = Ey(x) = −1

2y
′′(x) + 1

2x
2y(x)

• Near x0, we can approximate y(x) with:

– TRICK - turn x into x−x0: 1
2x

2 = 1
2([x−x0]+x0) = 1

2 [x−x0]2+x0[x−x0]+ 1
2x

2
0

– The first term is very small, and the third term is E since v = 0 there.

– So we can rewrite as −1
2y
′′(x) + 1

2x
2y(x) ≈ −1

2y
′′(x) +x0[x−x0]y(x) +Ey(x) =

Ey(x)⇒ y′′(x)− 2x0[x− x0]y(x) = 0

Weird: we’re defining a new variable t = (2x0)
1
3 [x− x0], which isn’t time, but where t > 0

is a forbidden region into which our block tunnels. Coupled with y′′ − ty = 0:

• Write out terms to see that y′(t)− ty(t) =
∑∞

n=2 ann(n− 1)tn−2−
∑∞

n=0 ant
n+1 = 0.

It looks like the sums skip over two terms at a time!

• Writing out the first few terms, the sum is 2a2+
∑∞

n=1[(n+2)(n+1)an+2−an−1]tn = 0

• Recurrence writing (base case) method: Since this is always true, try t = 0 to see
that a2 must be 0.

• Recurrence writing (recursive case) method: Try t = 0 to see that [(n + 2)(n +
1)an+2 − an−1] = 0 or that an+2 = an−1

(n+2)(n+1) , n ≥ 1

• We can also write the whole thing now as an = an−3

(n)(n−1) , n ≥ 3, a2 = 0, a0, a1 ∈ R3

• Write out terms to see there are three strings then:

– n = 3k − 1, where an = 0

– n = 3k, where an = a0
3k×3k−1×...×3×2

– n = 3k + 1, where an = a1
3k+1×3k×...×4×3

– Ratio test: Dividing successive terms by each other (within each string), we

see that y0 term ck has property | ck+1

ck
| = |t3|

(3k+3)(3k+2) , which, for a fixed t, will
eventually be less than one, so the series converges after that point.

– Similar for y1 series (3k + 1). So, the whole sum y(t) =
∑∞

k=0 a3k−1t
3k−1 +∑∞

k=0 a3kt
3k +

∑∞
k=0 a3k+1t

3k+1 = a0y0(t) + a1y1(t) converges for all t.
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However, looking at the truncated sums, we see that while the block oscillates for
t < 0, for t > 0 (block in the forbidden zone), the sum zooms to infinity. This
is because the truncated sums can’t be periodic - they’re finite polynomials. Only
infinite ones (like sin(t), for example) can oscillate.

5.4 The Wronskian (Determinant)

Main idea: We had a solution of a0y0(t) + a1y1(t) for the last problem. How do we know
that y0(t) and y1(t) are different? As in, they are not multiples of each other or really, they
are linearly independent? We use a matrix format for piles of these solutions and check if
the determinant is nonzero. This can be made clear for n = 2, but it appears subtle for
higher orders.

Note: It’s not always easy to tell if two functions (esp. sums) are linearly independent,
since sin(t) and cos(t − π

2 ) look different but are of course the same. Use the Wronskian
determinant to tell more accurately.

• Two functions y0(t), y1(t) are linearly dependent on an open interval I if there are
some a, b 6= 0 such that ay0(t) + by1(t) = 0

• Note this implies their derivatives are linearly dependent too, by differentiating both
sides: ay′0(t) + by′1(t) = 0

• Rearranging into a Wronskian matrix W [y0, y1] =

(
y0(t) y1(t)
y′0(t) y′1(t)

)
, we see that, since(

a
b

)
6= 0, that

(
y0(t) y1(t)
y′0(t) y′1(t)

)(
a
b

)
=

(
0
0

)
must mean the determinant of W is zero.

(Otherwise we could invert

(
0
0

)
to a nontrivial vector)

• This is the standard linear algebra test of linear independence, and works for any n

functions: W [f1, fn](t) =


f1 ... fn
f ′1 ... f ′n
... ... ...

fn−1
1 ... fn−1

n

 is singular if and only if the functions

are linearly dependent.

Note: This works for n = 2 for functions a, b since ab′ − a′b ⇒ a′/a = b′/b ⇒ ln(a) =
ln(b) + C ⇒ a = beC

Example:

• cos and sin are linearly independent since |
(

cos(t) sin(t)
− sin(t) cos(t)

)
| = 1
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• cosh = ex+e−x

2 and sinh = ex−e−x
2 are too since |

(
cosh(t) sinh(t)
d
dt [cosh(t)] d

dt [sinh(t)]

)
| = 1

• For two functions y0, y1 that solve the Airy equation y′′ − ty = 0, we can show that
W is not dependent on t:

– Starting with the diff eqs y′′0 − ty0 = 0, y′′1 − ty1 = 0⇒ y′′0/y0 = t = y′′1/y

– Then y0y
′′
1 = y′′0y1 ⇒ y0y

′′
1 − y′′0y1 = 0 (result 1)

– Definition of Wronskian determinant W (t) = y0y
′
1 − y′0y1

– W ′(t) = y0y
′′
1 +y′0y

′
1−y′′0y1−y′0y′1 = y0y

′′
1−y′′0y1, which is zero by result 1 above.

– A zero derivative of W (t) means that W (t) does not depend on t.

– This means that we can use ANY value of t to plug into W (t) for the Wronskian
determinant. For the Airy equations try t = 0: y0(0)y′1(0) − y1(0)y′0(0) =
(1)(1)− (0)(0) = 1

Note that Airy is a special case of y′′(t)+p1(t)y′(t)+p2(t)y(t) = 0, with p1 = 0, p2 = −t. We
can prove that W = c exp(−

∫
p1(t)dt) is a general solution, with some unknown constant

c.

• y′′ + p1y
′ + p2y = 0⇒ p1y

′ = −y′′ − p2y (rearrange)

• W = y0y
′
1 − y′0y1 (definition of Wronksian)

• p1W = y0(p1y
′
1)− y1(p1y

′
0) = y0(−y′′1 − p2y1)− y1(−y′′0 − p2y0) = y1y

′′
0 − y0y

′′
1 (sub in

p1y
′ from first bullet)

• This last term is −W ′(t) by above results.

• So p1W = W ′ ⇒W = c exp{−
∫
p1(t)dt} by basic homogeneous diff eq. solution.

This is Abel’s formula, and (somehow) generalizes to solve any

y(n) + p1(t)y(n−1) + ...+ pny(t) = 0, as W (t) = detW [y0, ...yn−1](t) = c exp{−
∫
p1(t)dt}

Applying Abel’s formula to find solutions to y′′(t) + 2y′(t) + y(t) = 0

• Find the first (homogeneous linear) solution by hypothesizing y = ert and seeing
(r2 + 2r + 1)ert = 0⇒ (r + 1)2 = 0⇒ r = −1⇒ y = ce−t

• (Note : Forget the c for now. It’s the same but cleaner)

• Then, the Wronskian can help us find the other linearly independent solution.

• We can find the Wronksian with Abel’s formula, p1(t) = 2⇒W (t) = c exp{−
∫

[2]dt} =
ce−2t. Again, forget the c.
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• So the determinant equation says there’s a function f so that e−tf ′− (−e−tf) = e−2t

• Multiply all by et, to get f ′ + f = e−t

• Solve that diff eq by using integrating factor et (multiply all by et again) to see
d
dt [e

ty1(t)] = 1⇒ ety1(t) = t⇒ y1(t) = te−t

• Note that if we kept constant c in there, then the solution would have been y1(t) =
te−t+ce−t = te−t+cy0(t), but the last part isn’t linearly independent of y0’s solution.

• So the whole solution set is Ce−t +Dte−t

5.5 Cauchy-Euler Equation

Main idea: Laplace equation (in this case, for disk pressure at point (x, y) on a floating
air bearing disk), is ∇2p = 0. Since it’s angle-independent, in polar coordinates we have

∇2p = 1
r
δ
δr (r δpδr ) + 1

r2
δ2p
δθ2

= 0

How to find the diff eq to solve:

• Separate variables by assuming solution is p(r, θ) = R(r)Θ(θ) and that Θ(θ) +
a sin(mt) + b sin(mt).

• The last assumption means that Θ′′ −Θ

• Churning through, we have Θ(θ){1
r
δ
δr (r δδr [R(r)])− m2

r2R(r)
} = 0

⇒ r2R′′(r) + rR′(r)−m2R(r) = 0

• This is a special case of Cauchy-Euler problem t2y′′ + αty′ + βy, t > 0, α, β ∈ R,
with α = −t, β = −m2, which is different than Airy equation y′′ − ty = 0 since the
highest-orer derivative has a multiple of t

How to solve the diff eq attempt 1: direct power series

• Plugging y(t) =
∑∞

n=0 ant
n and similar for y′, y′′, we list terms and and see 0 =

βa0 + [α+ β]a1t+
∑∞

n=2 an[n(n− 1) + αn+ β]

• Even though Cauchy-Euler suggests t > 0, we suppose the equation needs to work
for all t (Is this obvious?), so we know a0.

• However, since the whole power series is identically zero at all times, this MUST
mean all the coefficients are zero. So this method only produces y(t) = 0

How to solve the diff eq attempt 2: Try y(t) = tr

• Plugging y(t) = tr into y(t) =
∑∞

n=0 ant
n, we see that r must satisfy r(r−1)+αr+β =

0 (this is a characteristic equation or indicial equation, a term used in the Frobenius
method of DE solving. Apparently this is what we’re doing).
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• Finding two linearly indepedent solutons of form y(t) = tr: W [y0, y1](t) =

(
tr0 tr1

r0t
r0−1 r1t

r1−1

)
• The determinant W (t) = [r1 − r0]tr0+r1−1 which is nonzero on t > 0 iff r1 − r0 6= 0

• So we have different r0 and r1, which satisfy the characteristic equation t2y′′+αty′+βy

if they are basically quadratic roots: r± =
1−α±

√
(α−1)2−4β

2 If (α− 1)2 6= 0, then we
should have two of them

• Case 1: Roots are distinct and real, so we have y(t) = a+t
r+ + a−t

r−

• Case 2: Roots r, r̄ are distinct and complex: Re(r)± i× Im(r).

– tr = tRe(r)+iIm(r) = tRe(r)tiIm(r) = tRe(r)eiIm(r)ln(t) (by changing t base)

= tRe(r)[cos(Im(r) ln(t)) + i sin(Im(r) ln(t)] (by Euler identity)

– Same argument gives tr̄ = tRe(r)[cos(Im(r) ln(t))− i sin(Im(r) ln(t)]

– So combinations of atr+btr̄ end up being tRe(r)[c0 cos(Im(r) ln(t))+c1 sin(Im(r) ln(t)]

• Case three: Repeated (necessarily real) root. There is a tr but also another one out
there. Use Abel’s formula!

– W (t) = det

(
tr y1(t)

rtr−1 y′1(t)

)
= try′1(t)− rtr−1y1(t)

– This is called reduction of order since with a root in hand, we are now in a
first-order equation.

– To solve t2y′′ + αty′ + ηy = 0, write as Cauchy-Euler form y′′(t) + p1(t)y′(t) +
p2(t)y(t) = 0, or y′′(t) = α

t y
′(t) + β

t2
y(t) = 0. Use W (t) = c exp{−

∫
p1(t)dt} =

c exp{−
∫
α
t dt} ⇒W (t) = ct−a, t > 0

– Finally, solve our equation try′1(t)− rtr−1y1(t) = ct−α. Note that an integrating
factor u is something that helps us turn the left side into d

dt [u× y] = uy′ + u′y.

In this case, we’re looking for u so du
dt = − r

tu, or u = t−r (a separable equation)

– Setting c = 1 for simplicity, then d
dt [t
−ry1] = t−rt−α−r. But remember, from the

quadratic equation, that r = 1−α
2 , so solve d

dt [t
−ry1] = t−1

– This is y1(t) = Ctr + tr ln(t). Since y0(t) = Ctr, the combination solution is
Ctr +Dtr ln(t)

For some reason, in our (Airy?) equation, r2R(r)′′ + rR′(r) −m2R(r) = 0, m = 0, so we
have a Cauchy-Euler with α = 1 and a solution with repeated root 0. So our solution ends
up being R(r) = ar0 + br0 ln(r) = a+ b ln(r)
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5.6 Bessel’s Equation

Main idea: Equation (example: Vibrating drumhead) is t2y′′(t) + ty′(t) + (t2−ν2)y(t) = 0.
This equation:

• 1. Leads with t2y′′(t) like the Cauchy-Euler Equation (5.5). Therefore it will include
non-integer exponents in the series. (like tRe(r), maybe? Why?)

• 2. (All of its) coefficients depend on t like the Airy Equation (5.4), so it should be a
power series (Why?)

• Including non-integer exponents (1) IN a power series (2) apparently means we’ll be
using the method of Frobenius. This isn’t explained here but apparently is:

– Convert the equation to form p0(t)y(t)′′ + p1(t)y′(t) + p2y(t) = 0, where there
are no fractions among pi.

– Assume the solution is of the form y(t) = tr
∑∞

n=0 ant
n. Note that the general

form is (t− t0) for all those t’s but presented often with t0 = 0 for simplicity.

– (NEW or HIDDEN?) : Bring the tr into the sum as y =
∑∞

n=0 ant
n+r

– Calculate the power series for y =
∑∞

n=0 ant
n+r, y =

∑∞
n=0 an(n+r)tn+r−1, y′′ =∑∞

n=0 an(n+ r)(n+ r − 1)tn+r−2

– Substitute those generic y expressions into your equation and create one big
series.

– Rewrite each an term to not contain t, possibly as a recurrence.

– Consider t = 0 and see what terms are arbitrary and what are zero. Then Look
at the rewritten an terms, set them to zero and solve them to get two roots
r1, r2.

– Set r = r1 and solve the whole thing for one solution, and same for r = r2.
if they’re the same, look to Abel’s equation to find a linearly independent
partner.

– Write the general solution, usually a linearly independent combo of the instance
solutions.

Subcase 1 (Simpler): Assume ν = 0 and try a power series.

• With t2y′′(t) + ty′(t) + (t2 − ν2)y(t) = 0, write out the power series by subbing in
generic series for y, y′, y′′.

• This results in 0 = a1t+
∑∞

n=2[an−2+an(n(n−1)+n)]tn = a1t+
∑∞

n=2[an−2+ann
2]tn

• Setting this to t = 0 implies a0 is arbitrary, an = −an−2

n2 , n ≥ 2
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• Writing this out, all odd index ai are 0, and even are a0
∑∞

n=0
(−1)n

[n!]2
( t2)2n

• Apparently ν = 0 is the only viable power series solution.

Subcase 2: Cauchy-Euler equation for ν 6= 0. This means assume y(t) = trz(t)

• Find out the diff eq that z(t) satisfies by subbing y = trz(t) in the Bessel equation.
This happens tobe t2z′′ + (2r + 1)z′ + [r2 − ν2 + t2]z = 0

• Trick: Here, we see that setting r2 = ν2 in t2z′′(t)+(2r+1)z′(t)+[r2−ν2+t2]z(t) = 0
sort of reduces it to subcase 1.

• In any case, subbing r = ±ν and jamming through yields an = − an−2

[n±ν]2−ν2 , n ≥ 2

• With a1 = 0 (same as before), we have two solutions y(t) = t±ν
∑∞

n=0 ant
n, with an

as above. We can set a0 = 1 for convenience henceforth.

• The solution tνz(t), with ν > 0, is a “Bessel function” denoted Jν(t). This goes to
zero as t approaches zero from above (t→ 0+)

• The solution tνz(t), with ν < 0, is a “Bessel function” denoted Nν(t). This diverges
as t approaches zero from above (t→ 0+)

Apply to the vibrating circular membrane problem from previous chapters, specified by

• um(r, θ) = sin(t)[C cos(mθ) +D sin(mθ)]R(r),m ∈ {1, 2, 3...}

• with R(r) satisfying equation r2R′′(r) + rR′(r) + [k2r2 −m2]R(r) = 0

See that kr takes the place of r and m takes the place of ν. We have Bessel functions
Jm(kr) +BNm(kr) that solve the equation where ν is set to m on the y term. However, a
drumhead can’t diverge in position so necessarily B = 0.

The functions are defined by m (an element of the original equation), and the roots n.
Somehow these two combine to create the number (m + 1?) and complexity/position?
(n?) of bumps vibrating in the drumhead. Note that we need to set Jm(kr0) = 0 for
the edge of the drum. This, non-obviously, has an infinite number of solutions, which can
generally only be approximated numerically.

Aside; There’s an exception here where we can find a closed-form Bessel function.

• With ν = 1
2 , Jν(t) sees an = − an−2

(n+ 1
2

)2− 1
4

, n ≥ 2. Note that (n+ 1
2)2 − 1

4 = (n2 + n) =

(n+ 1)n, so with the recursion, the bottom terms become 1!, 3!, 5!, ....

• The whole thing becomes 1− t2

3! + t4

5! −
t6

7! ... = sin(t)
t

• With the front term t
1
2 , then J 1

2
(t) = sin(t)√

t
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Final case: If ν = 0, we need the OTHER solution beyond case 1’s series solution. We’ll
use the Wronksian (with our known solution) with Abel’s equation (for our p1 in our initial
diff eq):

• The determinant can be found with Abel’s equation: W (t) = c exp{−
∫
p1(t)dt} for

t2y′′(t) + ty′(t) + t2y(t) = 0

• This becomes y′′(t) + 1
t y
′(t) + y(t) = 0, so c exp(−

∫
1
t ) = ce− ln(t) = ct−1. Choose

c = 1 to get W (t) = 1
t

• Now let’s find N0, our unknown solution of the ν = 0 equation. det

(
J0 N0

J ′0 N ′0

)
=

J0N
′
0 −N0J

′
0 = 1

t .

• Rewrite as N ′0 −
J ′0
J0
N0 = 1

tJ0
.

• TRICK (general integrating factor): Remember that for general form y′+βy = k, the
integrating factor e

∫
β lets us write the whole thing as e

∫
βy′ + βe

∫
βy = d

dt [e
∫
βy] =

ke
∫
β

• In this case, β =
∫
−J ′0
J0

, so e− ln(J0) = 1
J0

• Then
N ′0
J0
− J ′0

J2
0
N0 = d

dt(
N0
J0

) = 1
tJ2

0
, so N0 = J0

∫
1

t[J0(t)]2

5.7 Hermite’s Equation

Main idea: A simple quantum harmonic oscillator, like the Airy equation. Somehow we
will learn eveything with Hermite’s Equation (Note: this seems like we learned how many
solutions and how to use them as a probability measure)

Earlier, we established the setup:

• Equation: Ey(x) = −1
2y
′′(x)+ 1

2x
2y(x), with |y(x)|2 as the pdf of finding the oscillator

near position x

Atempting a power series solution:

• y(x) = b0 + b1x+ b2x
2 + ... =

∑∞
n=0 bnx

n

• y′(x) = b1 + 2b2x+ 3b3x
2 + ... =

∑∞
n=0(n+ 1)bn+1x

n

• y′′(x) = 2b2 + 6b3x+ 12b4x
2 + ... =

∑∞
n=0(n+ 2)(n+ 1)bn+2x

n

• Convert the equation to −2Ey(x) = y′′(x)− x2y(x)

• So Ey(x) = y′′ − x2y(x) = 2b2 + 6b3x+ [12b4 − b0]x2 + [20b5 − b1]x3 + ...
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• 2b2 + 6b3x +
∑∞

x=0[(n + 3)(n + 4)bn+4 − bn]xn+2 = −2Ey(x) = −2Eb0 − 2Eb1x +∑∞
x=0[−2Ebn+2]xn+2

• This means −Eb0 = b2,−Eb1 = 3b3, and bn+4(n+3)(n+4)+2Ebn+2− bn = 0, n ≥ 0

Solving this equation is hard, but selecting E = 1
2 and magically, assuming b1 = 0, we

have:

• All bodd = 0 since the recursion for n+ 4 depends on n+ 2, n.

• b0 = 1, E = 1
2 ⇒ −Eb0 = −1

2 = b2.

• b4(0 + 3)(0 + 4) + b0+2 − b0 = 12b4 + b2 − b0 = 12b4 − 3
2 = 0⇒ b4 = 1

8

• Continuing, we see b6 = − 1
48 . Looking at terms, you see b2n = (−1)n

n!2n , n ≥ 0

Why did we choose E = 1
2? Let’s find a solution without using a series.

• Start with Ey(x) = −1
2y
′′(x) + 1

2x
2y(x)

• “Factor” it as −1
2 [ ddx − x][dxdy + xy]

• Churn through derivatives to see this = − d2y
dx2

+ 1
2x

2y − 1
2x

2y − 1
2y + 1

2x
2y = − d2y

dx2
+

1
2x

2y − 1
2y

• So we’re left with −1
2 [ ddx − x][dxdy + xy] = Ey − 1

2Y = (E − 1
2y), and if E = 1

2 , then

(E − 1
2y) = 0 = [dxdy + xy] = y′ + xy (another diff eq)

• We reduced the order of the diff eq to a separable first-order one, so we can either
separate or use the e

∫
β to see y = a0e

− 1
2
x2

The energy level E = 1
2 sees an oscillating solution, but this is not the only solution.

Many oscillator energies (turns, out, any E = n + 1
2) exist, and share the same feature:

x→ ±∞⇒ y → 0. In other words, they all go to zero at the extremes and therefore “look

like” the lowest energy (E = 1
2) solution a0e

−x
2

2

This suggests we attempt another solution separating out this factor. Let’s guess y =

z(x)e
−x2
2 , where again Ey(x) = −1

2y
′′(x) + 1

2x
2y(x).

• Replacing z(x)e−x
2
2 in for y in this E-based diff eq, we get the diff eq z′′ − 2xz′ +

(2E − 1)z = 0

• Now, find a recursion by substituting z(x) =
∑∞

n=0 anx
n in for z, churning through

to get an+2 = 2n+1−2E
(n+1)(n+2)an.

• A-ha: The neat thing for using n + 1
2 is that at some point, the numerator will be

zero, and thus, all successive same-parity terms will be zero!
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• So, for E1 = 1+ 1
2 , a0 = a2 = a4 = ... = 0, a1 is arbitrary, and a3 =

(2)(1)+1−(2)( 3
2

)

(1+1)(1+2) a1 =
0 = a5 = a7 = ...

• Therefore, for E = 3
2 , y(x) = z(x)e−

x2

2 = a1xe
−x

2

2

• Continiung in this way, E2 = 2 + 1
2 yields y(x) = a0[1 − 2x2]e−

x2

2 by plugging into
the recursion (and terminating at 0 = a4)

The upshot of this is that we want to find our probability of the oscillator with energy
En = n + 1

2 existing near x. The function |yn(x)|2 = Hn(x)2e−x
2

is that density, with
H0(x) = a0, H1(x) = a1x,H2(x) = a2[1− 2x2].

Application: How to find the probability that the E0 oscillator (centered at x = 0) is
outside “classic bounds” (turning points)?

• First, we know that the oscillator is at a turning point when the energy is all in one
term, say, potential: E0 = 1

2 = 1
2x

2 ⇒ x = ±1.

• Seocnd, we have to fix a0 such that
∫ x=∞
x=−∞ |y0(x)|2 = 1, or

∫ x=∞
x=−∞ a0e

−x
2

2 = 1, or
1
a20

=
∫
e−x.

• With identity
∫ x=∞
x=−∞ e

−ax2 =
√

π
a in hand, we see that a0 = π−

1
4

• We also have the complementary error function erfc(x) = 2√
π

∫ t=∞
t=x e−t

2
dt avail-

able to us. This basically says “if µ = 0, σ = 1√
2
, our Gaussian function roughly looks

like e−x
2
, so what’s the normal area outside of [−x, x]”?

• Since we’re looking to see if |x| > 1, plugging in erfc(1) to a numerical solver gives
p = .157299

5.8 Hydrogen Atom I

Main ideas:

|Φ(ρ, θ, ω)|2 measures the likelihood of finding an electron a certainn point away from the
center of an atom, in spherical coordinates. The potential energy between the electron and
the proton goes down inversely with distance ρ but doesn’t depend on the angles.

Putting this into Schroedinger’s equation in spherical coordinates, collapsing physical con-
stants into ρ0:

• ∇2Φ + ρ0
ρ Φ = 1

ρ2
δ
δρ(ρ2 δΦ

δρ ) + 1
ρ2 sin(φ)

δ
δφ(sin(φ) δΦδφ ) + 1

ρ2 sin2(φ)
( δ

2Φ
δθ2

) + ρ0
ρ Φ = Φ

• The trick is to separate into a part depending only on angles by creating an operator
L2: θ, φ: L2(Φ) = 1

sin(φ)
δ
δφ(sin(φ) δΦδφ ) + 1

sin2(φ)
( δ

2Φ
δθ2

)
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• So now 1
ρ2

δ
δρ(ρ2 δΦ

δρ ) + 1
ρ2
L2(Φ) + ρ0

ρ Φ = Φ

• The main trick to solving Φ: separate variables Φ = R(ρ)Y (θ, φ)

• Then, after cranking through, we get our first diff eq: ρ2R′′(ρ)+2ρR′(ρ)+[(const.)+
(ρ0 − ρ)ρ]R(ρ) = 0

• One weird note: This const, the ratio L2(Y (θ,φ))
Y (θ, phi) is written as −l(l + 1) for ease of

solving later. But instead, we’ll look at ρ2R′′(ρ)+2ρR′(ρ)+[−l(l+1)+(ρ0−ρ)ρ]R(ρ) =
0

Solving this equation:

• Note that as ρ → ∞, then ρ2 dominates, so this becomes ρ2R′′(p) = ρ2R(r). The
solutions are R(ρ) = eρ or R(ρ) = e−ρ. Only the latter dies off as ρ → ∞, which
makes sense, since the probability Φ would decrease the further out one gets. This
is our “long term behavior” of R.

• ρ2R′′(ρ)+2ρR′(ρ)+[−l(l+1)+(ρ0−ρ)ρ]R(ρ) = 0 can be rewritten with R(ρ) = ραu(ρ)
for some α of our choosing. Substituting and churning, we find the coefficient of u(ρ)
to be [α(α+ 1)− l(l + 1)]ρα + (ρ0 − ρ)ρα+1.

• Choosing α = l reduces the whole equation to ρu′′(ρ)+2(l+1)u′(ρ)+(ρ0−ρ)u(ρ) = 0

• Then, “peel off the long term behavior” e−ρ to state that R(ρ) = z(ρ)e−ρρl, for some
series z(ρ), with long term behavior e−ρ and proposed simplifying factor ρl.

• Writing out z(ρ) =
∑∞

n=0 anρ
n and plugging into ρu′′(ρ)+2(l+1)u′(ρ)+(ρ0−ρ)u(ρ) =

0 yields a ratio an+1

an
= 2(1+n+l)−ρ0

(n+1)(n+2(l+1))

• Note that if ρ0 = l = 0, this is just an = 2n

(n+1)!a0 after writing out terms, which

becomes e−2ρ−1
2ρ , which diverges as ρ→∞

• However, if we can find some p0 = 2[1 + N + l], N ∈ N, then we’ll have a zero term
at some an and all an+2 after it will be zero as well.

Physically, there are a ton of physical constants wrapped up in ρ0, so that ρ2
0 = −2m

h2
( q2

4πε0
)2 1
E .

This, for each electron level n ∈ {1, 2...} yields En = −13.6eV
n2 for the hydrogen spectrum.

Note that historically, p0 = 2(1 + N + l) = 2n, with the n by convention. For level l, we
can have angular momentum l as an integer l ∈ [0, n− 1]

• Each term is an+1 = 2(1+n+l)−ρ0
(n+1)(n+2(l+1)) , n ≥ 0

• We solve for the n, l integer pairs, where, l < n. If n = 1, l = 0, there’s only one term
before the zero, so Rn=1,l=0(ρ) = a0ρ

0e−ρ.
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• For n = 2, l = 0, a1 ⇒ p0 = 4, a0 the constants of z(ρ), a2 = 2(1+0+0)−4
(1)(2) ⇒ z(ρ) =

a0[1− ρ]⇒ Rn=2,l=0(ρ) = a0[1− ρ]e−ρρ0

• Similar subbing yields n = 2, l = 1⇒ z(ρ) = a0 ⇒ Rn=2,l=1(ρ) = a0ρ
1e−ρ

The upshot here is that, for n = 1, l = 0 the probabily density for where the electron is,
|Φ(~x)|2, is highest near ρ = 0. However, it’s certainly more likely to be NOT at the middle
than at the middle:

• Rn=1,l=0 = a0e
−ρ

• |Φn=1,l=0(~x)|2 = Ae−2ρ, with A a constant fixed by the condition that
∫∫∫

R3 Φ(~x)d~x =
1

• If we switch this to spherical coordinates with Jacobian ρ2 sin(φ), we end up with∫∫∫
R3 Φ(~x)d~x = 4πA

∫ ρ=r+ ε
2

ρ=r− ε
2

for any given spherical slice of size ε, so the probabilty

of an electron at r units away from origin is 4πAe−2rr2, which is maxized at critical
points r = 0 (local max) and r = 1 (global max)

5.9 Hydrogen Atom II

(Note: If we’re doing cleanup, can substitute ϕ for φ, but whatever)

Last section we focused on the radial coordinate ρ. In this section, we’ll complete the
d-orbital with angular coordinates θ (longitude) and φ (latitude).

• We’ll have to solve the untouched angular operator: L2(Φ) = 1
sin(φ)

δ
δφ(sin(φ) δΦδφ ) +

1
sin2(φ)

( δ
2Φ
δθ2

)

• Last time, we just fixed a constant and swept into a Y function like this : L2(Y (θ, φ)) =
−l(l + 1)Y (θ, φ).

• So the method is separation of variables again: Assume Y (θ, φ) = Θ(θ)Φ(φ).

• Subbing those in for Y , we churn to get L2(Y (θ,φ))
Y (θ,φ) = 1

sin2(φ)
{ sin(φ)

Φ(φ)
d
dφ(sin(φ)dΦ

dφ ) +

1
Θ(θ)(d

2Θ
dθ2

)} = −l(l + 1)

To find the dependence on θ :

• Since the θ part and the φ part aren’t mixed, there’s a φ-expression that equals const

−l(l + 1) which also equals θ-expression Θ′′(θ)
Θ(θ)

• If that const −l(l + 1) is renamed κ, then the solution (using basic er substitution)
is Θ = a+e

√
κθ + a−e

−
√
κθ
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• However, the θ (longitude) really shouldn’t matter to the probability distribution
of the electron, so with the constraint Θ(θ + 2π) = Θ(θ), this means that

√
κθ =

imθ,m ∈ Z⇒ κ = −m2.

• So Θ = a+e
imθ + a−e

−imθ

To find the dependence on φ :

• We know from the last section that L2(Y (θ,φ))
Y (θ,φ) = 1

sin2(φ)
{ sin(φ)

Φ(φ)
d
dφ(sin(φ)dΦ

dφ )+ 1
Θ(θ)(d

2Θ
dθ2

)} =

1
sin2(φ)

{ sin(φ)
Φ(φ)

d
dφ(sin(φ)dΦ

dφ )−m2}

• To simplify the term sin(φ)dΦ
dφ , method (after trial and error) is to substitute x =

cos(φ)⇒ dx = − sin(φ)dφ

•
√

1− x2 dΦ
dx

dx
dφ = −

√
1− x2

√
1− x2 dΦ

dx = [x2 − 1]dΦ
dx

• This leaves us 1
sin2(φ)

{ sin(φ)
Φ(φ)

d
dφ([x2− 1]dΦ

dx )−m2} = −l(l+ 1),which we can chain rule

again to ([1− x2]Φ′)′ − m2

1−x2 Φ = −l(l + 1)Φ

• To simplify, take m = 0 for now (we’ll come back to it later). d
dx([1 − x2]dΦ

dx ) =
−l(l + 1)Φ can be solved with a series as Φ′′ − x2Φ′′ − 2xΦ′ + l(l + 1)Φ = 0 starting
with Φ(x) =

∑∞
n=0 anx

n as usual.

• Sorting terms into each xn, we see that an+2

an
= n(n+1)−l(l+1)

(n+1)(n+2)

• The big a-ha: Setting our constant to l(l+ 1) earlier means that for the right choice
of l, the recurrence above terminates, and Φ is therefore a finite polynomial.

• (Note that, separating the ever increasing n part of the numerator from the l part, the
dominant part of this is basically a harmonic series so it doesn’t converge anywhere)

• The l(l + 1) will equal n(n+ 1) for one n, and it will eliminate the rest of either the
even chain of an or the odd one. Therefore, only one can be eliminated, and to make
the recursion terminate, either a0 = 0 or a1 = 0.

• Working it out,

– a1 = 0, l = 0⇒ Φ(x) = a0

– a0 = 0, l = 1⇒ Φ(x) = a1x

– a1 = 0, l = 2⇒ Φ(x) = a0[1− 3x2]

– So I suppose the Φ depends on these l and are different for each.

– This continued sequence Pl(x) stemming from m = 0 are called Legendre Poly-
nomials.
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– For some reason, Pl(x) ∝ dl

dxl
(x2 − 1)l

– If m 6= 0, then we have the associated Legendre function Pml (x) = (1 −
x2)

m
2
dm

dxmPl(x) satisfying the earlier equatoion, so d
dx([1− x2]

dPml
dx )− m2

1−x2P
m
l =

−l(l + 1)Pml

Now that we have Rl,n(ρ),Φl,m(φ),Θm(θ), we can put them together to get Ψl,m,n =
Rl,n(ρ)Φl,m(φ)Θm(θ) = Rl,n(ρ)Pml (cos(φ)).[A+e

imθ + A−e
−imθ]. Let’s solve it for n =

3,m = 0, l = 2

• With m = 0, the [A+e
imθ +A−e

−imθ] becomes constant.

• With l = 2, the φ piece becomes P2 = [1− 3x2] = [1− 3 cos2(φ)]

• With l = 2, n = 3, the R(ρ)-associatd recursion ak+1 = 2(1+k+l)−2n
(k+1)(k+2(l+1))ak, k ≥ 0

becomes just a0, so Rn=3,l=2(ρ) = (
∑∞

n=0 akρ
k)ρ2e−ρ = a0ρ

2e−ρ ∝ ρ2e−ρ

So our final density, up to a constant of proportionality (that makes the whole space equal
to 1) is |Ψn,m=0,l=2|2 ∝ ρ4e−2ρ[3 cos2(φ)− 1]2

• This has four variables, so we can only visualize slices of it, say of “constant proba-
bility” c2, like c2 = ρ4e−2ρ[3 cos2(φ)− 1]2

• A slice of such constant probability would be described by now-depedent variables
ρ, θ, φ, in spherical coordinates as (ρ cos(θ) sin(φ), ρ sin(θ) sin(φ), ρ cos(φ))

• Solving for cos(φ) in c2 = ρ4e−2ρ[3 cos2(φ)−1]2, we churn and find
±|c|eρ

ρ2
+1

3 = cos2(θ)

• Therefore, sin2(θ) = 1− cos2(θ) =
2∓|c|eρ

ρ2

3

• The slice P = (±ρ cos(θ)

√
2∓|c|eρ
ρ2

3 ,±ρ sin(θ)

√
2∓|c|eρ
ρ2

3 ,±ρ

√
±|c|eρ
ρ2

+1

3 )

• Rotating θ ∈ [0, 2π] produces the orbital.

• There are apparently four surfaces depending on the combo of±s we choose (I suppose
+,+,+ would be the same as −,−,− since θ will change the signs symmetrically)

• The d-electron orbital is built this way (top ball, top half-donut, bottom of the half-
donut, bottom ball)

• So this visualization is just for a constant probability, and I guess we can’t really
know what it looks like in 3D truly (maybe a cloud with colors of density?)
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