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Abstract

An earlier paper (http://fettermania.com/math/bdice.pdf) focused on a near-optimal
strategy for maximizing expected value in gameplay for Bitches: A Dice Game. This
paper focuses on a different question: what is the probability of playing a perfect game
(and is there any subtlety to doing so)? Using standard recursive calculation, we calcu-
late the probabilities with the out-of-box game setup. Then we venture into a related
question: What’s the expected win probability with r standard dice remaining of side
count d as r Ñ8? We give poor bounds, prove convergence, and find surprising results
along the way.

1 Introduction and the Commercial Game

Outside of ideological patron Larry Waldman, the publication of my original b. a. d. g.
paper (http://fettermania.com/math/bdice.pdf) received little fanfare from humans. How-
ever, the robots somehow picked up on this and brought it to the attention of Samuel Cox,
creator of the game. After dispensing mild praise about the paper and strong confusion
about my interest in it, Mr. Cox suggested another problem.

Instead of “how does one play the game with high/maximum expected value?” (addressed
in the first paper), Mr. Cox wondered how often a perfect game (one in which the best
possible score is achieved at the end) occurs if played optimally. Though optimal play
looks obvious (pick up all your maximum rolls), Mr. Cox has also debated with his class:
“is it always best to pick up all your maximum-roll dice?”

I took this on and a day or so later, the solution to this particular question surfaced. As
usual, twinkly subproblems appeared along the way, and I left to find a solution to a related
problem: does the probability of a perfect game converge to a positive number as the number
of dice increase to infinity?

We’ll briefly review this subgame’s rules and the solution method for the commercially
offered game before diving in to a discovered second quest: asymptotic behavior of infinite
dice. We’ll note surprising or interesting findings in bold-italic.
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1.1 The Game

Though the rules to the multi-player game are detailed in the original paper referenced
above, we will reformulate this for a solitaire-style game, which follows this pattern:

1. Begin with 12 standard dice of six sides, along with one eight-, one ten-, and one
twelve-sided die.

2. On each turn, roll all remaining dice in play.

3. If there are no dice with a maximum side showing (e.g. a six-sided die showing six
pips), you have lost (“busted”).

4. Set aside some number of dice which have achieved their maximum roll.

5. Continue until no dice remain (you have a perfect game) or you have busted out.

The question “how likely am I to get a perfect score?” therefore relies on the strategy one
employs in picking up dice.

1.2 Mistake 1: The Strategy Assumption

Proposition 1.1 (Smoke ’em if you got ’em). The best strategy to achieve a perfect game
is to always pick up as many dice with maximum face value as the turn allows.

This proposition is:

1. Simple

2. Obvious

3. The strategy any reasonable person would employ

4. Initially assumed for the calculations in the next section

5. Mathematically false

In the next section, we assume this simple, deterministic strategy in calculating the ex-
pected value of any state reachable from the standard b. a. d. g. starting configuration
and show where it goes wrong.

1.3 Solution Method for the Commercial Game

The following definitions will help us write a program to get our solution for the commercial
game:
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• The “state” ~s :“ ra, b, c, ds is how many dice of size 6, 8, 10, and 12 remain, respec-
tively1. We start at ~S “ r12, 1, 1, 1s. A perfect game ends at ~s “ ~0. A failure to roll
any max roll ends the game in an unlisted ‘losing’ state ∅.

• The “probability vector” ~p :“ r1{6, 1{8, 1{10, 1{12s is the chance of getting a max roll
from each of the dice sizes, again here assumed to be 6, 8, 10, 12.

• With a win defined as value 1 (F p~0q “ F pr0, 0, 0, 0sq “ 1) and a loss as value 0
(F p∅q “ 0), the “expected game value” of any other state ~s is denoted as F p~sq. Said
another way, F p~sq is the probability of ending up in winning state ~0 from state ~s.

• We call any state ~t :“ rt1, t2...tzs reachable from state ~s :“ rs1, s2...szs if ti ď si for
all 1 ď i ď z, but ~s ‰ ~t. More intuitively, if you can start at state ~s and get to state ~t
in one roll (and corresponding pickup) of your dice, then ~t is reachable from ~s. This
is just any non-bust state “smaller than” where you are now.

1.4 Probability Lemmas

First, let’s limit ourselves to a game (or state) with only a single flavor of dice, say d-sided,
collapsing state vector ~s to a single integer r (r dice of size d left). Refer to Fig. 1 for
a partial visualization of the states and transitions starting at r dice left of size d, with
p :“ 1{d, q :“ 1´ p.

¨ ¨ ¨

F p0q “ 1 F p1q F p2q F pr´1q F prq
p `

2
1

˘

pq

p2

`

r
1

˘

p qr´1

`

r´1
r´3

˘

p r´3q2

∅ ∅ ∅ ∅

q q2 qr´1 qr

Figure 1: Transition graph of the dice game showing expected values F prq and a few
transition probabilities.

Lemma 1.2 (EV of r d-sided dice). The chance of a completing perfect game from a state
of r standard dice of d sides each, with definitions p :“ 1

d , Psinglepr, k, pq :“
`

r
k

˘

pkp1´pqr´k,
and F p0q “ 1 is defined by the recurrence F prq “

řr
k“1 Psinglepr, k, pqF pr ´ kq.

Proof : This a clear application of the binomial theorem. With the Smoke ’Em if you Got
’Em Strategy, the chance of transitioning to the state with r´ k remaining dice from that
with r is the chance of rolling exactly k max rolls and r ´ k non-max rolls among your

1We refer to this often as an arbitrarily-sized vector as well
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d-sided dice, or Psinglepr, k, pq. The expected value of being in this new state is defined as
F pr´ kq. The value of this state transition possibility is Psinglepr, k, pqF pr´ kq. The total
expected value of being in state r is therefore the sum of the values of all possible state
transitions. Note that k “ 0 implies a roll with no maxes, and thus a loss (value 0), and
F p0q “ 1 since no dice remaining (outside of a loss case) means a victory, or unit value of
expectation.

Extending this to dice of z different sizes is clear:

Lemma 1.3 (State Transition lemma). Ptransitionp~s,~t, ~pq, the chance of transitioning from
state ~s “ rs1, s2, . . . szs to state ~t “ rt1, t2 . . . tzs with probability vector ~p “ rp1, p2 . . . pzs is
equal to

śz
i“1 Psinglep~si,~ti, ~piq.

Proof: Divide the turn’s roll into z independent subrolls, each rolling all si dice, 1 ď i ď
z, themselves each with pi chance of hitting a max. The outcomes of these z subrolls
are all mutually independent, so Ptransition can be expressed as the product of Psingle

quantities.

1.5 Simple recursive algorithm

With these easy proofs and definitions in hand, the algorithm follows readily - build up
each state from F p~0q to F p~Sq by applying the State Transition Lemma and previously
computed values of F in Algorithm 1. Notes:

• Steps 1 - 5 are definitions from the lemmas above.

• Step 6 creates a set of all states reachable from state ~s, including ~s itself.

• Thinking of the states as a directed graph where a state points to all the states
reachable from it, Step 7 creates an ordered list of states ~s1, ~s2, ~s3... ,
like r0, 0, 0, 0s, r0, 0, 1, 0s, r0, 1, 0, 0s, r0, 1, 1, 0s.... where, when ~si is encountered in the
list, all states reachable from ~si occur before ~si in the list. There are many such
possible orders. This is required for step 9’s F p~tq values to be defined.

• Step 9 uses Lemma 1.3 to calculate F p~sq from the values of previously calculated
substates.

1.6 Results for Commercial Game

Using the Smoke ’Em if you Got ’Em strategy, the chance of winning2 F p~sq for every state
~s, with ~s ranging from ~0 to ~S “ r12, 1, 1, 1s is listed in Figures 2 and 3. These are computed
with a simple python program3.

2Alternatively, expected value of being in state F p~sq, with F p~0q “ 1, F p∅q “ 0
3https://github.com/fettermania/mathnotes/blob/main/bdice2/bdice2.py
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Algorithm 1 Dynamic program for F p~Sq

1: ~S Ð r12, 1, 1, 1s
2: ~pÐ

“

1
6 ,

1
8 ,

1
10 ,

1
12

‰

3: Psinglepr, k, pq :“
`

r
k

˘

pkp1´ pqr´k

4: Ptransitionp~s1, ~s2, ~pq :“
śdimp~sq

i“0 Psinglep~s1i, ~s2i, ~piq
5: F p~0q Ð 1

6: substatesp~sq :“
dimpsq
Ś

i“0
r0, sis

7: states Ð topological sort
´

substatesp~Sqztr0, 0, 0, 0su
¯

8: for ~s P states do
9: F p~sq Ð

ř

~tPpsubstatesp~sqzt~suq Ptransitionp~s,~tq ¨ F p~tq
10: end for

Note that this state table is four-dimensional, with each dimension i corresponding to the
count of dice si in each state. Since the number of 8-, 10-, and 12-sided dice is either zero
or one, we’ve collapsed these into four 12 by 2 tables, where dk notes the number of dice
of size k.

Our main initial result for F p~Sq is in the bottom-right corner of Fig. 3.

d6zd8 0 1

0 1 0.125
1 0.1667 0.05642
2 0.07407 0.03244
3 0.04192 0.02206
4 0.02809 0.01679
5 0.02107 0.01378
6 0.01708 0.01195
7 0.01463 0.01076
8 0.01303 0.009966
9 0.01195 0.009423
10 0.01119 0.009044
11 0.01065 0.008779
12 0.01025 0.008591

d6zd8 0 1

0 0.1 0.03469
1 0.04556 0.02046
2 0.02644 0.01425
3 0.01815 0.01109
4 0.01392 0.009299
5 0.01152 0.008218
6 0.01006 0.007537
7 0.009124 0.0071
8 0.008506 0.006818
9 0.00809 0.006638
10 0.007809 0.006529
11 0.007618 0.006468
12 0.007491 0.006441

Figure 2: Expected values for pd10, d12q “ p0, 0q (left) and p1, 0q (right).
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d6zd8 0 1

0 0.08333 0.02908
1 0.03819 0.01726
2 0.02231 0.01209
3 0.0154 0.009464
4 0.01188 0.00798
5 0.009888 0.007088
6 0.008677 0.006532
7 0.007907 0.006181
8 0.007404 0.00596
9 0.007071 0.005825
10 0.006851 0.00575
11 0.006707 0.005715
12 0.006618 0.005709

d6zd8 0 1

0 0.02347 0.01087
1 0.01406 0.007809
2 0.009946 0.006252
3 0.007849 0.005385
4 0.006672 0.004879
5 0.005971 0.00458
6 0.005542 0.004408
7 0.005278 0.004318
8 0.00512 0.004283
9 0.005033 0.004284
10 0.004994 0.004312
11 0.004988 0.004356
12 0.005005 0.004413

Figure 3: Expected values for pd10, d12q “ p0, 1q (left) and p1, 1q (right).

1.7 Observations

Observations from Figs. 2 and 3:

• Most of the time, starting with some state ~s and picking up one or more dice will
increase the expected value of winning.

• However, we do note some non-monotonicity: there are two surprising “critical
points” at r12, 0, 1, 1s and r9, 1, 1, 1s, where instead of the EV decreasing as d6 in-
creases, the EV increases instead. This means that, for example, the best strategy
when rolling two max-sixes and no other max dice in state r10, 1, 1, 1s is to leave
one max die on the table so as to end up in slightly higher EV state r9, 1, 1, 1s
over r8, 1, 1, 1s. We will revisit these in the next section.

• At all states reachable from r12, 0, 1, 1s, the best strategy is confirmed: pick up as
many max-rolled dice as possible. Deviating from this strategy produces an F -value
smaller than those in the table. Note: The “bend” at r11, 0, 1, 1s does not affect this;
you have no alternative from [12,0,1,1] than to pick up if [11,0,1,1] if you roll one
max-six.

• At all states reachable from r10, 1, 1, 1s, the simple strategy remains best.

• We can confirm that holding d6 steady, it’s always better to have zero than one of
each of the 8, 10, and 12-sided dice.
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What The Creator Asked For: The chance of getting a perfect run the commercial
game using the Smoke ’Em strategy is about 0.004413, or a little more than 4.4%.

1.8 Re-examining The optimal strategy

From examining the table it becomes clear that there are expected values for states ~s,~t
such that ~t is reachable from ~s yet F p~tq ă F p~sq.

This means we need to refine our formula to choose the best selectable EV state from state
~s, not just the furthest from ~s. With this definition in hand:

selectable statesp~s,~tq :“ psubstatesp~sq ´ ~sq ´ substatesp~tq ` ~t

update Step 9 of Algorithm 1 above to:

F p~sq Ð
ř

~tPpsubstatesp~sq´t~suq Ptransitionp~s,~tq ¨max~uPselectable statesp~s,~tqF p~uq

Because F monotonically decreases as all of d6, d8, d10, d12 increase up to these criti-
cal points, these two functions will be equal on states reachable from r10, 1, 1, 1s and
r12, 0, 1, 1s.

We then need to recursively reevaluate F on “bigger” states than r9, 1, 1, 1s, shown in Fig.
4.

d6zd8 0 1

0 0.02347 0.01087
1 0.01406 0.007809
2 0.009946 0.006252
3 0.007849 0.005385
4 0.006672 0.004879
5 0.005971 0.00458
6 0.005542 0.004408
7 0.005278 0.004318
8 0.00512 0.004283
9 0.005033 0.004284
10 0.004994 0.004312 Ñ 0.004312
11 0.004988 0.004356 Ñ 0.004366
12 0.005005 0.004413 Ñ 0.004446

Figure 4: Expected values for pd10, d12q “ p0, 1q (left) and p1, 1q (right).
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What The Creator Really Asked For: The chance of getting a perfect run the com-
mercial game using the very best strategy (smoke ’em except leave a second and final
unsupported six on rd6 P t10, 11, 12u, d8 “ 1, d10 “ 1, d12 “ 1s) is about 0.004446, or a
little more than 4.4%, a 0.73% relative improvement on the smoke ’em strategy.

So it turns out Mr. Cox’s students are correct - you may indeed want to “save” future
six rolls if your rarer “onesies” remain. The difference on the commercial game begins at
r10, 1, 1, 1s, and occurs exactly when you roll exactly 2 sixes on 6-sided dice and no other
maxes.

• r10, 1, 1, 1s: Naive: Take both sixes (EV = 0.0043116537). Optimal: Take only 1 six
(EV = 0.0043120029).

• r11, 1, 1, 1s: Naive: Take both sixes (EV = 0.0043564817). Optimal: Take only 1 six
(EV = 0.0043662025).

• r12, 1, 1, 1s: Naive: Take both sixes (EV = 0.0044132805). Optimal: Take only 1 six
(EV = 0.0044456381).

It’s nice to see the game is complex and non monotonic even in this constrained scenario.
There are configurations with more dice yielding other critical points in their spaces, es-
pecially as more dimensions (dice types) are added. Though the difference is minuscule in
the commercial game, expanding ~S to something like ~S˚ “ r24, 2, 2, 2s yields a wider EV
difference between simple and optimal strategies4.

2 The Second Quest: d6 Ñ 8

But can we say nothing more definitive than that? Looking at the left column on the first
table (Fig. 2) with only one type of die, it looks like a higher dice count both decreases
our chance of winning, but may only do so asymptotically.

Let’s run ~S “ rr, 0, 0, 0s, r Ñ8 and see (Table 1).

It certainly looks like there is an asymptote to which F p~sq converges. This will be the
thrust of the rest of this paper: examining the infinite game of F p~sq with one type of die.
But can we prove there is an asymptote?

Two notes:

• We only have one type of die now, and if we have r of them left, the EV of that state
is given as F prq (we changed F to take integers now instead of vectors).

4F p ~S˚q “ 0.0033078600 using the basic strategy and 0.0038614244 using its corresponding optimal
strategy, a 17% improvement
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r F prq

0 1.000000000000000
1 0.166666666666667
2 0.074074074074074
3 0.041923868312757
4 0.028091341512981
5 0.021074519393544
6 0.017084426737672
7 0.014629278661270
8 0.013031406311202
9 0.011947904221376
10 0.011190349681739
...

...

90 0.009033527660227
91 0.009033527656758
92 0.009033527653985
93 0.009033527651768
94 0.009033527649995
95 0.009033527648578
96 0.009033527647444
97 0.009033527646538
98 0.009033527645813
99 0.009033527645234
100 0.009033527644770

Table 1: Values of F prq with p “ 1
6

• Unless we see an inflection point (F prq reverses direction and starts increasing past
a certain point), the simple strategy and optimal strategy (from section 1) are equiv-
alent.

• If we can find limrÑ8 Fdprq, with dice of size d and limrÑ8 Fgprq with dice of size
g ą d, then it’s clear that an infinite proportional mix of these dice will fall between
them; this is not examined further.

2.1 Mathematical Lemmas

Note: For some d-sided die, we assume p :“ 1{d, q :“ 1´ p for the rest of the paper.

To restate F for a single die value:

Definition 2.1 (EV of Game at state r). The expected value of the game with r fixed
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d-sided dice is 1 at r “ 0, and when r ą 0, is defined by F prq “
řr

k“1

`

r
k

˘

pkqr´kF pr ´ kq.

Lemma 2.2 (Easy Cases Lemma). If p “ 0, F(r) = 0. If p “ 1, F prq “ 1. If p “ 1
2 , for

any r ą 0, F prq “ 1
2 .

Proof : Though we won’t be flipping infinite pp “ 0q or 1-sided pp “ 1q, dice, these algebraic
identities are obvious (can’t succeed, can’t fail, respectively) and will be useful later.

Base case for p “ 1
2 : F p1q “ 1

2 since a perfect game occurs if and only if the 2-die (coin,
really) shows 2 instead of 1.

Inductive case for p “ 1
2 : Assuming F pkq “ 1

2 for all 0 ă k ă r, and F p0q “ 1:

F prq “
r´1
ÿ

k“1

ˆ

r

k

˙

pkqr´kF pr ´ kq `

ˆ

r

r

˙

prq0F p0q

“ r

ˆ

r

1

˙

`

ˆ

r

2

˙

` . . .`

ˆ

r

r ´ 1

˙

s
1

2r
p
1

2
q `

1

2r
2p

1

2
q

“ p2r ´ 2q
1

2r
p
1

2
q ` 2

1

2r
p
1

2
q

“ p2rq
1

2r
p
1

2
q

“
1

2

For simplicity, we consider only p ď 1
2 from here on out5.

Lemma 2.3 (Lazy Upper Bound for F prq). With r ě 1 dice left, F prq ď p.

Proof : See Fig. 1. Any successful path from state r ą 0 to state 0 has a final jump
of the form pk, k ď r. For instance, the “low” path in Fig. 1 would have probability
F prq “ r

`

r
1

˘

pqr´1sr
`

r
1

˘

pr´3q2sr
`

2
1

˘

pqsp1. A single, near-miraculous jump from state r would
have probability F prq “ pr. In any case, F prq “Mpr, pqpk for some Mpr, pq ď 1, and some
k ě 1 for the final stage before 0. Since pk ď p for k ě 1, F prq “Mpr, pqpk ă pk ď p.

Lemma 2.4 (Lazy Lower Bound for F prq (Pochhammer form)). With r ě 1 dice remain-
ing, F prq ě

śk
i“1p1´ q

kq.

Proof : See Fig. 1. Any successful path passes through a set of these stages r . . . 0 without
once falling into the state ∅. This means that if state k is included in the path, that
there was a p1´ qkq chance of not busting at that stage. So, assuming our successful path
visited every single stage (picking up exactly one die each time), the chance of success
would be at least F prq “

śk
i“1p1 ´ qkq, since we survived every “bust trap”. However,

5Swap “q” for “p” in all statements if p ą 1
2

and you’ll find mirrored results (e.g. p converges upward)
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we need not visit every stage (we could possibly pick up more than one die). Therefore,
F prq ě

śk
i“1p1´ q

kq.

Interestingly enough, this lower bound for F prq is a known quantity called the q-
Pochhammer symbol pq; qq8 “

śk
i“1p1´ q

kq, with known convergence properties,
appearing in areas like quantum algebra and physics. News to me. Neato.

However, this symbol does not have a closed form evaluation. Let’s try to find a closed
form bound that’s even WORSE than this one.

Lemma 2.5 (Closed Form Lower Bound Lemma). For an unbounded set of r ą 0 dice,
p ď 1

2 , the probability F prq of getting a perfect game has a lower bound of expp´ q
p1´qq2

q.

Proof :

• First we have F prq ě
śr

k“1p1´ q
kq from the Lazy Lower Bound lemma.

• This means logpF prqq ě
řr

k“1 logp1´ qkq

Often, logp1 ´ zq is approximated by ´z near zero, but we are most concerned with z
near one, since 1 ´ z approaches 0, and logp1 ´ zq explodes. Therefore, let’s look at the
expansion of logp1´ zq:

• Identity 1: fpzq “ ´ 1
1´z “ ´1´ z ´ z2 ´ . . .

• Identity 2:
ş

fpzq “ logp1´ zq “ ´z ´ z2

2 ´
z3

3 ´ . . .

So when summing
řk

i“1 logp1´ qkq, we can instead sum:

logpF prqq “ logp1´ q1q ` logp1´ q2q ` logp1´ q3q ` ¨ ¨ ¨ (1)

“

ˆ

´q ´
q2

2
´
q3

3
´ ¨ ¨ ¨

˙

`

ˆ

´q2 ´
q4

2
´
q6

3
´ ¨ ¨ ¨

˙

`

ˆ

´q3 ´
q6

2
´
q9

3
´ ¨ ¨ ¨

˙

` ¨ ¨ ¨ (2)

ą
`

´q ´ q2 ´ q3 ´ ¨ ¨ ¨
˘

`
`

´q2 ´ q4 ´ q6 ´ ¨ ¨ ¨
˘

`
`

´q3 ´ q6 ´ q9 ´ ¨ ¨ ¨
˘

` ¨ ¨ ¨ (3)

“
´q

1´ q
`

´q2

1´ q2
`

´q3

1´ q3
` ¨ ¨ ¨ (4)

ą
´q

1´ q
`
´q2

1´ q
`
´q3

1´ q
` ¨ ¨ ¨ (5)

“
1

1´ q

“

´q ´ q2 ´ q3 ´ ¨ ¨ ¨
‰

(6)

“
´q

p1´ qq2
(7)
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• (2) follows from (1) by substitution using Identity 2 above.

• (3) follows from (2) since the denominators of (2) are larger.

• (4) follows from (3) when dividing each sequence by ´qk and applying identity 1.

• (5) follows from (4) since the denominators of (4) are larger.

• (6) and (7) follow from (5) by dividing out 1
1´q and applying Identity 2.

Since logpF prqq ą ´q
p1´qq2

, F prq ą expp ´q
p1´qq2

q.

q P p8q pq; qq8 exp
´

´
q

p1´qq2

¯

1{2 5.0000ˆ 10´1 2.8879ˆ 10´1 1.3534ˆ 10´1

2{3 1.9827ˆ 10´1 6.9272ˆ 10´2 2.4788ˆ 10´3

3{4 7.3137ˆ 10´2 1.5545ˆ 10´2 6.1442ˆ 10´6

4{5 2.5997ˆ 10´2 3.3680ˆ 10´3 2.0612ˆ 10´9

5{6 9.0335ˆ 10´3 7.1400ˆ 10´4 9.3576ˆ 10´14

6{7 3.0912ˆ 10´3 1.4913ˆ 10´4 5.7495ˆ 10´19

7{8 1.0461ˆ 10´3 3.0815ˆ 10´5 4.7809ˆ 10´25

8{9 3.5109ˆ 10´4 6.3155ˆ 10´6 5.3802ˆ 10´32

9{10 1.1705ˆ 10´4 1.2861ˆ 10´6 8.1940ˆ 10´40

This is a very poor bound, especially when compared to pq; qq8. But being able to prove
Lemma 2.3 and 2.5 in closed form (or without relying on the Pochhammer result) yields
this surprising result:

Corollary 2.6 (Bounded Results for F prq as r Ñ 8). As p Ñ 0, F prq can be made
arbitrarily close to 0. However, for fixed p ą 0, F prq ą ε as r Ñ8 for some ε ą 0.

The upshot: Though increasing the number of sides of the dice can drive F(r) to
zero, increasing the number of dice (r) to infinity will never drive F(r) below
some fixed constant dependent only on p.

There are a few ways to make this stronger:

1. Find a closed form solution for F prq.

2. Find a solution for the asymptote of F(r) as r Ñ8.

3. Prove that F prq actually converges (instead of just “is bounded”) as r Ñ8.

We will show why (1) is unlikely, that (3) is true, and hope to one day get better bounds
for (2) than lemmas 2.3 and 2.5.
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2.2 An Unlikely Closed Form

Definition 2.1, again is F prq “
řr

k“1

`

r
k

˘

pkqr´kF pr ´ kq, r ą 0, with F p0q “ 1.

Definition 2.1 is a complicated recurrence; each successive F prq depends not only on the
previous result F pr ´ 1q but all previous results F pr ´ jq, 0 ď j ď r.

Applying Definition 2.1 by hand yields:

Table A: List of F(r):

F p0q “ 1,

F p1q “ p,

F p2q “ p2
`

1` 2q
˘

,

F p3q “ p3
`

1` 3q ` 3q2 ` 6q3
˘

,

F p4q “ p4
`

1` 4q ` 6q2 ` 16q3 ` 12q4 ` 12q5 ` 24q6
˘

,

F p5q “ p5
`

1` 5q ` 10q2 ` 30q3 ` 35q4 ` 50q5 ` 90q6 ` 80q7 ` 60q8 ` 60q9 ` 120q10
˘

,

F p6q “ p6
`

1` 6q ` 15q2 ` 50q3 ` 75q4 ` 126q5 ` 240q6 ` 300q7 ` 360q8 ` 390q9

` 660q10 ` 540q11 ` 480q12 ` 360q13 ` 360q14 ` 720q15
˘

.

This pattern in this form isn’t yet obvious. Let’s look at differences F prq ´ F pr ` 1q; if
these converge or are bounded, we have hope for a closed form solution:

Table B: List of F(r) - F(r+1):

13



F p0q ´ F p1q “ 1
`

1´ p
˘

,

F p1q ´ F p2q “ p
`

1´ p´ 2pq
˘

,

F p2q ´ F p3q “ p2
`

1` 2q ´ p´ 3pq ´ 3pq2 ´ 6pq3
˘

,

F p3q ´ F p4q “ p3
`

1` 3q ` 3q2 ` 6q3

´ p´ 4pq ´ 6pq2 ´ 16pq3 ´ 12pq4 ´ 12pq5 ´ 24pq6
˘

,

F p4q ´ F p5q “ p4
`

1` 4q ` 6q2 ` 16q3 ` 12q4 ` 12q5 ` 24q6

´ p´ 5pq ´ 10pq2 ´ 30pq3 ´ 35pq4 ´ 50pq5 ´ 90pq6

´ 80pq7 ´ 60pq8 ´ 60pq9 ´ 120pq10
˘

,

F p5q ´ F p6q “ p5
`

1` 5q ` 10q2 ` 30q3 ` 35q4 ` 50q5 ` 90q6 ` 80q7 ` 60q8 ` 60q9 ` 120q10

´ p´ 6pq ´ 15pq2 ´ 50pq3 ´ 75pq4 ´ 126pq5 ´ 240pq6

´ 300pq7 ´ 360pq8 ´ 390pq9 ´ 660pq10 ´ 540pq11

´ 480pq12 ´ 360pq13 ´ 360pq14 ´ 720pq15
˘

.

Proposition 2.7 (F(r) does not have a closed form).

Thoughts, not a proof :

• Since the degree of p in F prq is rpr`1q
2 , this suggests F ’s successive functions become

more complicated than a closed from allows.

• The successive differences are also complicated, as in Table B. By Lemma 2.2, the
differences collapse at p “ 1

2 for any r ą 0, but must be nonzero at some p “ 1
2 ´ ε,

but summing these to produce a closed form looks even less tenable.

Though not a proof, these suggest there may not be a fundamentally simpler way to
capture our multi-way recurrence than a polynomial whose degree is a triangle
number in r! Then, my next failed attempt to find a solution focused instead on the
seemingly monotonic behavior of F prq, r Ñ8 for fixed p ă 1

2 .

2.3 F(r) is non-monotonic

Theorem 2.8 (Incorrect Blind Alley: F pr ` 1q ă F prq, r ą 0). If p ă 1
2 , F pr ` 1q ă F prq

for r ą 0.

Failed Proof : This certainly seems obvious. Perhaps there are reformulations or combina-
torial identities that allow the reduction of Definition 2.1 to something manageable.
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The bugbear of F prqp12q “
1
2 made sure, however, that successive differences had to be

extremely small near 1
2 , so no real daylight poked through. Additionally, there are coun-

tervailing forces as well: you are less likely to fail on stage r`1 (immediate bust probability:
qr`1) than stage r (immediate bust probability: qr), but more likely to land further away
from stage 0 than at stage r, presumably worse EV by induction.

All hope was lost when the counterexample was found.

Proposition 2.9 (Counterexample to Monotonicity). F prq ă F pr ` 1q for certain values
of r ą 0, p ă 1

2 .

Consider that at p “ 1
2 , F prq “ F psq “ 1

2 for any r, s ą 0, and therefore, F prq´F pr`1q “ 0.
If F prq ą F pr ` 1q when p ă 1

2 , we can know with p at anydistance ε below 1
2 , that the

difference will be positive.

First, reformulate each of the expressions in Table B as dependent on this ε: with p Ñ
1
2 ´ ε, q Ñ

1
2 ` ε:

List of F(r) - F(r+1), as a function ε:

F p1q ´ F p2q “ ´2ε3 ` 1
2 ε,

F p2q ´ F p3q “ 6ε6 ` 3ε5 ´ 3ε4 ´ 3
2 ε

3 ` 3
8 ε

2 ` 3
16 ε,

F p3q ´ F p4q “ ´24ε10 ´ 36ε9 ` 20ε7 ` 11ε6 ´ 5
2 ε

5 ´ 4ε4 ´ 1
4 ε

3 ` 13
32 ε

2 ` 3
64 ε,

F p4q ´ F p5q “ 120ε15 ` 360ε14 ` 330ε13 ´ 40ε12 ´ 485
2 ε11 ´ 267

2 ε10 ´ 7
8 ε

9 ` 50ε8

` 925
32 ε

7 ´ 9
32 ε

6 ´ 801
128 ε

5 ´ 71
32 ε

4 ` 185
512 ε

3 ` 135
512 ε

2 ` 3
2048 ε,

F p5q ´ F p6q “ ´720ε21 ´ 3600ε20 ´ 7200ε19 ´ 6420ε18 ´ 315ε17 ` 4560ε16 ` 3810ε15 ` 720ε14

´ 6285
8 ε13 ´ 6205

8 ε12 ´ 2893
8 ε11 ` 231

32 ε
10 ` 13305

128 ε9 ` 1985
32 ε8

` 1387
128 ε

7 ´ 1273
128 ε

6 ´ 21449
4096 ε

5 ´ 1405
4096 ε

4 ` 425
1024 ε

3

` 2047
16384 ε

2 ´ 423
65536 ε.

We’re looking to see if F(r) - F(r+1) is ever negative, and we need look no further than
F p5q ´ F p6q, for small ε. Notice that if ε is almost zero, the final term in each sum
C ¨ ε for some C will dominate the expression, as ε2, ε3... will be exceedingly small. For
F p1q ´ F p2q, F p2q ´ F p3q, F p3q ´ F p4q and F p4q ´ F p5q, the final C is positive, but for
F p5q ´ F p6q, C = ´ 423

65536 . This means that for small epsilon, looking at p “ 1
2 ´ ε may

yield an increase in EV as we move from 5 to 6 dice left.

Sure enough, for ε “ .005, pp “ .495q, we see that F pr ` 1q can be greater than F prq in
Table 2:
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r F prq

0 1.000000000000000
1 0.495
2 0.49250025
3 0.49155356436553116
4 0.4913090668731703
5 0.4912951070978062
6 0.4913242043135742
7 0.4913441989090334
8 0.49135032152170444
9 0.4913486656274434
10 0.4913447466697759

Table 2: Values of F prq with p “ 0.495

We can see that F prq will reverse directions (yellow cells) as r increases, though it does
asymptotically approach something like 0.4913417493573063 as r Ñ8.

With monotonicity and bounds, convergence is assured. Without it, we must show conver-
gence another way.

2.4 F(r) converges as r Ñ 8

Theorem 2.10 (F(r) convergence). : F prq converges when p ď 1
2 .

Notice that each term F pkq in table A is of the form F pkq “ pkak, where ak is completely
a function of q.

a0 “ 1, F p0q “ 1 “ p0a0 (8)

a1 “ 1, F p1q “ p “ p1a1 (9)

a2 “ 1` 2q, F p2q “ p2a2 (10)

a3 “ 1` 3q ` 3q2 ` 6q3, F p3q “ p3a3 (11)

Let’s look again at definition 2.1 and an equivalent way to write it:
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F prq “ prar (12)

F prq “
r
ÿ

k“1

ˆ

r

k

˙

pkqr´kF pr ´ kq (13)

F prq{pr “
r
ÿ

k“1

ˆ

r

k

˙

pk´rqr´kpr´kar´k (14)

ar “
r
ÿ

k“1

ˆ

r

k

˙

qr´kar´k (15)

“

r´1
ÿ

m“0

ˆ

r

m

˙

qm am. (16)

The final line works when reindexing as m “ r´k. Now the pattern of successive functions
from Table A emerges a little more clearly.

If we can find the a ratio of F pr`1q
F prq “ par`1

ar
, r Ñ 8 of constant or decreasing magnitude,

we can assert convergence. We will show that Rr :“
ar`1
ar

approaches 1
1´q “

1
p , so the ratio

of F pr`1q
F prq Ñ 1.

Note: I used ChatGPT-4o for this section to help formalize this more clearly.

Step 1: Express ar`1 in terms of ar. Using Pascal’s identity,

ar`1 “
r
ÿ

k“0

ˆ

r ` 1

k

˙

q kak

“

r
ÿ

k“0

´

ˆ

r

k

˙

`

ˆ

r

k ´ 1

˙

¯

q kak

“

r´1
ÿ

k“0

ˆ

r

k

˙

q kak
looooooomooooooon

“ ar

` q rar ` q
r´1
ÿ

k“0

ˆ

r

k

˙

q kak`1.

Dividing by ar gives

Rr “ 1` q r ` q
r´1
ÿ

k“0

ˆ

r

k

˙

q k
ak`1
ar

.

Step 2: Two-sided bounds. Let

mr´1 :“ min
0ďkďr´1

ak`1
ak

, Mr´1 :“ max
0ďkďr´1

ak`1
ak

.
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Since
ak`1
ar

“
ak`1
ak

¨
ak
ar

and
řr´1

k“0

`

r
k

˘

q kak “ ar, equation (1) implies

1` q r ` q mr´1 ď Rr ď 1` q r ` qMr´1, pr ě 1q.

Step 3: Take limits. Let L :“ lim suprÑ8Rr and ` :“ lim infrÑ8Rr. Since q r Ñ 0,
inequality (2) yields

L ď 1` qL, ` ě 1` q`.

Thus p1´ qqL ď 1 and p1´ qq` ě 1, so ` ě 1
1´q ě L. Therefore ` “ L “ 1

1´q , i.e.

lim
rÑ8

ar`1
ar

“
1

1´ q
.

Direction for q ą 1
2 . From the upper bound in (2),

Rr ď 1` qMfr´1 ď 1`
q

1´ q
“

1

1´ q
,

so the approach is from below when q ą 1
2 (equivalently p ă 1

2).
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